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Abstract

Bayesian methodologies are rapidly becoming tools in machine learning analysis. Among all
these conventional and recently developed Bayesian analysis tools, Expectation Maximization
(EM) algorithms plays the pivotal role in modern Bayesian analysis and so is its extension
Variational Expectation and Maximization (VEM) algorithm. Both of these methodologies have
been widely used in the application of modern Bayesian analysis in machine learning such as
textual analysis established on Latent Dirichlet Allocation (LDA), which is usually referred to
Topic Models. This note mainly discusses the modern technical tools and analytical framework
for application of modern Bayesian analysis along with the associated properties with specific
focus on Topic Models and how EM algorithm is set up from Variational Bayesian perspective.
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1 Introduction

Variational Bayes methods and Empirical Bayes methods (Armstrong et al., 2020) have recently
gained much attention in academia especially in machine learning literature since under many
circumstances shrinkage has to be imposed to improve the both the in-sample fitting and out-of-
sample prediction accuracy. Another major reason for the increasing popularity of this analysis
framework within academia is that currently there is no general way to account for uncertainties
without imposing many parametric assumptions, this is actually an issue that has been pointed
in some recent literature like Hansen (2016, p.116). Bayesian analysis instead offers a flexible
and philosophically coherent framework based on posterior analysis for learning with data rich in
hierarchical structure. However in most practical application settings, the posterior is in general
intractable and consequently some modern sampling algorithms like MCMC have to be adopted
for approximating the target posterior based on the sampling. One key feature of sampling
methods like MCMC is the intrinsically required heavy block-loop structure and hence very often
computational efficiency is deteriorated in large-scale applications. By comparison, Variational
Bayes (VB) method as an alternative for sampling algorithm like MCMC has been empirically
proved to be able to circumvent the computational inefficiency often encountered in sampling
algorithm while keeping desired approximation as much as possible (Braun and McAuliffe, 2010;
Blei, Kucukelbir, and McAuliffe, 2017). VB actually is a specific methodology originated from the
more extensive variational approximation analytical framework which can be at least traced back
to (Jordan et al., 1999; Winn and Bishop, 2005). One of the major reasons for the documented
computation efficiency gained from VB, which is one of the main attractive properties justifying its
increasing popularity in large-scale application as well, is the corresponding feature in formulating
the posterior approximation as a specific optimization problem. Briefly speaking, the rough idea
underlying the core of VB is to find the closest distribution to the exact posterior over some family
of distributions (Guo, Wang, Fan, Broderick, and Dunson, 2016). Recently there is also some work
justifying the ground theory for VB (Wang and Blei, 2019; Alquier and Ridgway, 2020), where they
have formerly defined the VB methodology and related theoretical properties of VB approximation
(specifically all these work discuss the frequentist concentration of VB approximation for posterior
under different divergence concepts). In fact VB is an extensive framework such that many classical
algorithms like EM algorithm are possible to be included in the discussion within this framework. As
for the development of modern empirical methods in Economics and Finance, Armstrong, Kolesár,
and Plagborg-Møller (2020) extends empirical Bayes confidence interval of Morris (1983) in a robust
way free of the prior distribution imposed on means.

Another reason why Variational Bayes method has attained much attention in economics
literature is the development of economic models with intrinsic requirement to incorporate stochastic
variation of parameters since Cooley and Prescott (1976). In recent decades, accompanied with
the fast development of data science and machine learning techniques, econometric models with
time-varying parameters and high-dimensional data-structure are broadly acknowledged in academia
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as an important topic, there has been a large amount of recent literature established on this
framework.

Another area where such a kind of analytical framework is possibly to be applied is counterfactual
analysis with synthetic controls in high-dimensional settings. Seminal work can be traced back to
Abadie and Gardeazabal (2003) and Abadie et al. (2010). Recently there is a nice and comprehensive
review work on this framework by Abadie (2020). Ever since the synthetic control method was
proposed in Abadie and Gardeazabal (2003) for the first time, it has received widespread attention
both in economic and machine learning literature. The reason why counterfactual analysis is
an important tool for social science is that under many circumstances causality is of the most
importance to be discussed in social science researches (for instance there is growing literature in
finance discussing the publication effect of anomaly-based trading strategies (Mclean and Pontiff,
2016; Chen and Zimmermann, 2020b; Pelger and Xiong, 2020)) and usually the casual statements
with respect to treatment (intervention) depends on the construction of counterfactuals, which are
typically the unobserved outcomes that would have been if a unit had not been treated. Routinely,
estimation of counterfactual effects of this kind is based on the aforementioned synthetic control
method that makes the desired estimation upon the estimation of outcomes of similar group of
individuals not affected by the intervention. This intuitive idea driving synthetic method is similar
to the comparative studies widely adopted in other social science where the key idea is laid upon
that the effect of intervention can be inferred by comparing the evolution of the target (outcome)
variables of interest between the unit exposed to treatment and a group of units that are similar to
the unit but were not affected by the treatment. A inherent key factor for ensuring the validity
comparative analysis is the affinity between unit exposed to treatment and the units not exposed to
treatment, which is however not that easy to be justified in practice. There is an emerging literature
on applying machine learning methods in recovering the unobserved counterfactual effects from
synthetic controls (Doudchenko and Imbens, 2017; Chernozhukov et al., 2020a,b; Athey et al., 2020).

One alternative for counterfactual construction discussed in Carvalho et al. (2018), the so-called
ArCo method, is essentially a two-step procedure: In the first step, the data before the occurrence of
the intervention is used to estimate a multivariate time-series regression model relating the variables
in the treated (dependent variables) with the variables belonging to the untreated peers (explanatory
variables); In the second step, the counterfactual is constructed by extrapolating the estimated
model with data after intervention. Finally the estimated effect is the time-series average of the
difference between the data actual data and counterfactual.

A natural follow-up question would be whether it is possible to account for the potential
time-varying properties.
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2 Basic Setup and Assumptions

2.1 Notation

All random variables are defined in a Probability Space (Ω,F ,P). Random variables are defined by
upper case letter and the associated realization is defined by lower case letter such that X(ω) = x.
Matrices and vectors are written in bold letters X. Hence each entry of the realized X, i.e., xij ,
denotes the i-th realization (row) of the j-th random variable (column). Sets are denoted by
calligraphic upper case X and the associated cardinality is denoted by ∣X ∣. For the symbol of norm,
we use ∥⋅∥ to denote the generic (semi)norm; ∥⋅∥q and ∥⋅∥Lq are adopted to denote `q and Lq norms
respectively for q ∈ [1,∞). Specifically these two norms are defined separately for the cases when
d > 1 and d = 1 when the vector X = (X1, . . . ,Xd)

⊺ degenerates to a scalar (For this case we just use
X to denote the degenerated scalar random variable). That is

∥X∥q ∶= (
d

∑
i=1

∣Xi∣
q
)

1/q

∥X∥Lq ∶= (E∣X ∣
q
)
1/q

We further introduce other notation for norm such that

∥X∥∞ ∶= max
i⩽d

∣Xi∣ if X is d × 1 vector

∥X∥max ∶= max
i⩽m,j⩽n

∣Xi,j ∣ if X is m × n matrix

Furthermore, we introduce the following notation (`0 norm)

∥X∥0 ∶= ∣{i ∶Xi ≠ 0}∣

and quadratic form associated with d-dimensional matrix M takes the following form

∥X∥
2
M ∶= X⊺MX

And we also adopt diag (X) to denote the diagonal matrix whose diagonal elements are extracted
from the diagonal of X; 1 (A) represents an indicator function on the event A, i.e., 1 (A) = 1 if A
is true or 1 (A) = 0, otherwise. Yes you can build a VAR model for the target variable and the
covariates using the approach by Koop and Korobilis. Then the estimated model together with
updated values for the covariates can be used to estimate counterfactual values of the target variable.
In the following discussion, I may use term “intervened” or “treated” interchangeably with the same
meaning that intervention has taken place at a specific period.

Definition 1 The probability density function for the random matrix X (n × p) that follows the
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matrix normal distribution MN (M,U,V) has the form:

p (X ∣ M,U,V) =
exp (−1

2 tr [V−1 (X −M)
⊺U−1 (X −M)])

(2π)np/2 ∣V∣
n/2

∣U∣
p/2

(1)

The matrix norm is related to the multivariate normal distribution in the following way

X∼MN (M,U,V) (2)

if and only if
vec(X)∼ N (vec (M) ,V ⊗U)

where V is p × p matrix and U is n × n matrix respectively.

2.2 Counterfactual analysis and synthetic control

The procedure implemented in counterfactual analysis with synthetic controls is briefly discussed
in this subsection. We assume the target variable is a scalar denoted by Yt, which is exposed to a
treatment (intervention) that occurred at t = T0 + 1. Counterfactual effect is then estimated from
the covariates X (X is generally a P ×J matrix with the j-th column indicating the j-th unit, either
treated or not; and for each column as a P × 1 column vector refers to the vector collecting the
covariates associated with each unit), i.e., characteristics of peers that are assumed to be unaffected
by the intervention. Realization of real valued random vector is observed, which is denoted by

Zt = (Z1t, . . . , ZJ+1,t)
⊺
= (Z⊺

0t ⋮ Z⊺
1t)

⊺

where we just introduce notation Z⊺
0t and Z⊺

1t as two sub column vectors of Zt to emphasize that
the observed random vector generally can be separated into treated group (Z⊺

1t accordingly) and
untreated group (Z⊺

1t accordingly). Dt ∈ {0,1} is introduced as a sequence of binary variable
indicating the periods when treatment (intervention) was in place, that is

Dt =

⎧⎪⎪
⎨
⎪⎪⎩

1 if t > T0

0 otherwise
(3)

For each period t, the observed Zit could be either from Z
(1)
it which is the potential outcome when

the unit i is exposed to the intervention or from Z
(0)
it which is the potential outcome when the unit

i is not exposed to the intervention. Hence we are able to jointly express Zit ∈ Z1t as

Zit = DtZ
(1)
it + (1 −Dt)Z

(0)
it (4)

Without loss of generality, we may focus on the case when there is a single variable contained
treated group and denote this scalar Yt = Z1t as target variable; All the remained J units from donor
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pool (peers assumed to be not affected by intervention) are collected in Z0t, that is

Z0t = (Z2t, . . . , ZJ+1,t)
⊺

Given this restricted case when Z1t is the target variable potentially exposed to intervention, we are
interested in evaluating what would Z1t have been like had there been no intervention, i.e. we are
interested in obtaining the evaluation of Z(0)

1t by approximating it using the following functional
form 1

Z0
1t =M (Z

(0)
0t ;θ0) + Vt, t = 1, . . . , T (5)

where
M ∶ Z ×Θ→R, Z ⊆ Rn−1

and then the estimated evaluation of Z(0)
1t is

Ẑ
(0)
1t =M (Z

(0)
0t ; θ̂T0)

The remained question of potential research interest is what exactly the functional form ofM (⋅)

we are able to apply to approximate the target unobserved counterfactual effect. Machine learning
method as one alternative of the statistician toolkit is widely known for its ability at this kind of
objective, for instance the recently developed machine learning algorithms taking the advantage
of Bayesian techniques featuring the tree structure (Chipman et al., 1998; Denison et al., 1998;
Chipman et al., 2010; Ročková and van der Pas, 2019; Ročková, 2019; Ročková and Saha, 2019).
Alternatively it is also worthwhile making an attempt to apply the framework proposed by Koop
and Korobilis (2020) to modelM (⋅), since this would potentially bring the advantage of accounting
for the time-varying properties ofM(⋅).

Alternatively, we may make our analysis restricted to linear framework and accordingly some
theoretic properties are relatively easy to establish, hence this is by far the framework within which
most of the discussions are made in literature. In particular, within linear framework, the general
objective (Abadie, 2020) is to uncover the optimized W∗ such that for a given V the following
objective function is minimized

∥X1 −X0W∥ =
⎛

⎝

P

∑
p=1

vp (Xp1 −w2Xp2 −⋯ −wJ+1Xp,J+1)
2⎞

⎠

1/2

(6)

1 As argued in Abadie (2020), one of the key feature of synthetic control method is the implicit assumption that the
combination of units in the donor pool may approximate the characteristics of the the affected unit substantially
better than any unaffected unit alone, and this serves as one motivating reason why we want to introduce the general
functional form of units in donor pool.
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where

W = (w2, . . . ,wJ)
⊺

V = (v1, . . . , vk)
⊺

and we abbreviate the timing subscript for both X1t and X0t with focus on the cross-sectional
dimension. Then the functional form of counterfactual effect within this framework is

Ẑ
(0)
1t =M (Z0t; θ̂T0) =

J+1

∑
j=2

w∗
jZjt (7)

One of the key assumption justifying our discussion is

Z1t ⊥⊥ Ds for all t, s.

Once we are able to back out Z(0)
1t as precise as possible, then conceptually the following difference

is used as the proxy for evaluating counterfactual effects,

H0 ∶ δt ∶= Z
(1)
1t −Z

(0)
1t for t > T0 (8)

and corresponding estimation for δt along with it is given as

δ̂t = Z1t − Ẑ
(0)
1t

and finally the evaluated difference due to the intervention is

∆̂T =
1

T − T0

T

∑
t=T0+1

δ̂t

and the associated 1
T−T0

∑
T
t=T0+1 δt. In this note I also attach the replicated figures separately in

Figure 4(a) and Figure 4(b) as following. As emphasized in Abadie (2020), synthetic control method
is essentially a weighted average algorithm using the weighted average of characteristics of units from
donor pool (i.e. sometimes it is referred to fitting) to approximate the unobserved counterfactual
effect of target variable by restricting the weights on probability simplex. As we have always
emphasized, the goal of counterfactual analysis or synthetic control is to approximate the trajectory
that would have been observed for Yt = Z1t at t > T0 in the absence of intervention.

To justify the intrinsic advantage of synthetic control method in comparison to other method-
ologies, it would be useful to compare synthetic control method with linear regression framework.
The way we adhere to using linear regression is augmenting the characteristic space of units from
treated group and untreated group by adding a row of ones to X1 and X0 respectively, denoted by
X1 and X0. Further more, let Y0 as the (T − T0)× J matrix denote the observed effects for J units
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from untreated group. The regression of Y0 on X0 yields the estimated counterfactual effect based
on regression as

B̂⊺X1 (9)

where B̂ collects the regression coefficients in the following form

B̂ = (X0X
⊺

0)
−1

X0Y
⊺
0

Hence this implies that the estimated counterfactual effect is

Y0 X
⊺

1 (X0X
⊺

0)
−1

X1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Wreg

(10)

Remark 2.1 For the restricted case where there is a single unit in the treated group, both X1

and X1 are P × 1 column vector, which implies the final estimated counterfactual effect collected
in Y0X

⊺

1 (X0X
⊺

0)
−1

X1 is a (T − T0) × 1 column vector with each entry indicating the estimated
counterfactual effect at each period after intervention.

Remark 2.2 One prominent feature of the prevalent synthetic analysis framework is the underlying
implicit assumption that researchers are informed about how the treated and untreated group is
divided, but it seems not always the case in practice. Actually once the intervention is imposed, which
units are exposed to the intervention generally is not known for researchers. Or in other words, for
the target variable that is supposed to be contained in treated group, the corresponding treated effect
on the target variable is time-varying (after the period when the intervention is imposed). Hence the
counterfactual effect like a “phantom” should be treated as latent variable in general, and recently
there is an inspiring work by Bojinov and Shepard (2019). In this work they have emphasized the
timing scheme of counterfactual effect, which is demonstrated in the following adapted figure

[Place Figure 1 about here]

The basic idea is as following: it is obvious from the figure that for a realized sequence of target
variable(s), the status whether it is (they are) affected by the intervention (treatment) is totally
determined by the unobserved path

W1∶T = (W1, . . . ,WT )

where each element Wt (1 ⩽ t ⩽ T ) as the binary variable indicating whether the associated target
variable is exposed to intervention or not. Wt (1 ⩽ t ⩽ T ) is also referred to treatment path in
literature.

An straightforward extension in Bayesian framework is by considering the Dirichlet allocation or
the variational bayes method widely adopted in Bayesian literature. Since all these techniques
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automatically satisfy the inherent requirement of synthetic control method that the average weights
have to be added up to 1. Moreover, as has been widely discussed in statistical literature, Dirichlet
allocation intrinsically features the sparsity desired in the application of synthetic method. A specific
discussion within Bayesian framework is discussed as following. Moreover, it is a natural idea to
regard the unobserved counterfactual of units from treated group as latent variables within Bayesian
framework.

Generally, there are two kinds of available information (data) for backing out the counterfactual
effect: (i) the inherent trend information of target variable(s) contained in treated group, which is
potentially able to be extracted by using (V)AR model; (ii) information contained in covariates
collected in donor pool (untreated group), information of this kind in general features the dynamic
of covariates. Finally the evaluated counterfactual effect can be written as the linear combination of
the counterfactual effects estimated from these two kinds of information. Formally in mathematics,

⎧⎪⎪
⎨
⎪⎪⎩

z1t = Az1t−1 + εt

z0t = Ax0t + εt

(11)

(12)

3 Latent Dirichlet Allocation

3.1 Basic concepts

As proposed in Blei et al. (2003), some basic concepts about text documents are introduced as
following

• Aword refers to a item drawn from vocabulary indexed by {1, . . . , V }, each word is represented
by a V -vector such that if this word belongs to the v-th term then w is specifically a vector
wv = 1 and wu = 0 if u ≠ v.

• A document refers to a sequence of N words collected in w = (w1, . . . ,wN), where wn is the
n-th word in sequence.

• A corpus is a collection of M documents denoted by D = {w1, . . . ,wM}.

3.2 Estimation

Basically, Latent Dirichlet Allocation (LDA) assumes the following generating process,

Step 1 The term distribution β is determined for each topic by

β ∼ Dir(δ)

Step 2 Choose θ ∼ Dir(α).

Step 3 For each of N words wn:
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3a) Choose a topic zn ∼Multinomial(θ).

3b) Choose a word wn from p(wn ∣ zn,β), a multinomial probability conditional on the
topic zn.

where β refers to a word probabilities matrix of dimension k × V with,

βij = P (wj
= 1 ∣ zi = 1) .

Specifically more in details, a k-dimensional Dirichlet random variable can take values in the (k − 1)

simplex (a k vector lies in the (k − 1)-simplex if θi ⩾ 0 and ∑ki=1 θi = 1), and has the following
probability density function over its simplex

p(θ ∣ α) =
Γ (∑

k
i=1 αi)

∏
k
i=1 Γ (αi)

θαi−1i ⋯θαk−1k

=
Γ(αk)

Γ(α)k

k

∏
i=1

θα−1i (A special case in which α1 = ⋯ = αk)

Remark 3.1 How Dirichlet distribution is updated based on data observations. Suppose that random
variables are drawn from multinomial distribution (thus sampling from 1,⋯, k with repetition) with
the sampling probability drawn from the special case of Dirichlet distribution mentioned in the context.
There are totally N -times samplings such that

x1+, . . . ,+xi+, . . . ,+xk = N and 1 ⩽ i ⩽ k

where xi represents how many times k is selected. The joint density is

p(x, θ ∣ α) =
N !

x1!,⋯, xk!

k

∏
i=1

θxii ⋅
Γ(αk)

Γ(α)k

k

∏
i=1

θα−1i

=
N !

x1!,⋯, xk!

Γ(αk)

Γ(α)k
⋅
k

∏
i=1

θxi+α−1i (13)

where (13) is of the functional form of the density function of Dirichlet distribution, hence it is easy
to obtain the marginalization of the distribution of data x by integrating out θ, which yields

p(x ∣ α) =
N !

x1!,⋯, xk!

Consequently according to Byes rule, we have the posterior update about θ based on data observations
as

p(θ ∣ x, α) =
p(x, θ ∣ α)

p(x ∣ α)
=

Γ(αk)

Γ(α)k
⋅
k

∏
i=1

θxi+α−1i = Dir(x1 + α,⋯, xk + α) (14)

Discussion following conventional style in machine learning and natural language processing
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literature generally adopts conventional methodologies for processing unstructured information
extracted from text, the corresponding analysis of which relies much on counting the occurrences
of words. These methodologies however are justified by the implicit assumption that the order
of words collected in documents (filings) is not related to the information to be recovered. By
contrast, topic models featuring the application of LDA (Latent Dirichlet Allocation) provides a
relatively successful extension of the conventional methodologies in natural language processing by
assuming that the words collected in documents are implicitly in connection with several different
topics (to some extent, topics or themes are regarded as the latent variables which are not observed
and required to be estimated). To the end, topic models are essentially the modelling framework
through which the aggregate information contained in documents (each document is regarded as a
sequence of words in order) is extracted. Generally there are two alternatives for estimating this
this model, VEM (Variational Expectation Maximization) and Gibbs Sampling, which are to be
briefly discussed in the following.

VEM (Variational Expectation Maximization) is introduced for estimation with the likelihood
function specified as following

`(α,β) = log(p(w ∣ α,β))

= log∫ {∑
z

[
N

∏
i=1

p (wi ∣ zi,β)p (zi ∣ θ)]}p(θ ∣ α)dθ.

where z = (zi)i=1,...,N includes all the combinations of assigning N words into k topics. VEM is
specifically a combination of Variational inference and E-M algorithms. More details about the
Variational inference refer to (Mclachlan and Krishnan, 2008; Dempster et al., 1977; Wainwright
and Jordan, 2008). Since here entries of β are directly regarded as parameters to be estimated if
VEM is applied, hyperparameter δ is no more the parameter of interest.

Gibbs sampling can be done as well for approximating p(z ∣ w), which essentially corresponds to
the posterior probability of topic conditional on the observed words. α and δ are fixed at suggested
values with α = 50/k and δ = 0.1. Theoretical work done by Griffiths and Steyvers (2004); Phan et al.
(2008) has justified that the whole loop of Gibbs sampling is compositionally based on sampling
from the following distribution Fama and French (1993, 1996, 2015)

p (zi =K ∣ w, z−i)∝
n
(j)
−i,K + δ

n
(⋅)

−i,K + V δ

n
(di)
−i,K + α

n
(di)
−i,⋅ + kα

(15)

• where n(j)
−i,K denotes how often the j-th term collected in vocabulary is assigned to topic K

without the i-th word.

• di indexes the document to which word wi belongs.

• Dot ⋅ implies that the summation over this index is implemented.
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The term distribution and topic distribution is updated as following

β̂
(j)
K =

n
(j)
K + δ

n
(.)
K + V δ

θ̂
(d)
K =

n
(d)
K + α

n(d) + kα
(16)

for j = 1, . . . , V and d = 1, . . . ,D.

4 How to define Disaster Measure using LDA

The output from LDA generally gives us the key words extracted from text. The remained question
is about how to match the extracted keywords (topics) with the existing dictionary indicating
whether the associated contents are about disasters.

5 Notes for Variational Methods in Bayesian Analysis

5.1 EM Algorithm

Rather than sampling as in MCMC, EM algorithm initially proposed by (Dempster et al., 1977)
chooses the target density function from a family of approximate density functions Q such that,

q∗(z) = arg min
q(z)∈Q

KL(q(z)∥p(z ∣ x)) (17)

Here we just denote q(z) ∈ Q without specifying any parameters for it, however sometimes for the
implementability concern in practice we usually consider the parametrized family Q such that each
element contained in Q takes the form of qφ(z). Actually specification of the functional form of
q(z) depends on how much the flexibility to be taken into account for analysis and for the scenario
when we make the assumption that q(z) is factorizable, it can be demonstrated how optimization is
set up in the discussion about Variational Expectation Maximization algorithm contained in the
next subsection.

The most popular estimation technique adopted in statistical literature is MLE (Maximum
Likelihood Estimation) where parameters are estimated based on the observed data by solving the
following optimization

θ̂ML = arg max
θ

p(x;θ). (18)

Instead of being directly connected with observed data x through data generating process, it is
practical and sometimes for convenience concern to introduce latent variables z such that the
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likelihood function is actually the marginalization of joint likelihood as following 2

p(x;θ) = ∫ p(x,z;θ)dz = ∫ p(x ∣ z;θ)p(z;θ)dz (19)

It would also be helpful to summarize the general ideas for the framework in the following figure
where latent variables are introduced, which is usually the case where Variational Bayes method
plays the role.

x

z θφ

qθ(x ∣ z)qφ(z ∣ x)

generative model, decoderrecognition model, encoder

N

Proposition 5.1 Under some regular conditions,

p(x;θ) = F (q,θ) +KL(q∥p) (20)

with

F (q,θ) = ∫ q(z) ln(
p(x,z ∣ θ)

q(z)
)dz (21)

Proof.

lnp(x;θ) = ∫ q(z) ln
p(x;θ)p(z ∣ x;θ)

p(z ∣ x;θ)
dz

= ∫ q(z) ln
p(z,x;θ)

p(z ∣ x;θ)
dz

= ∫ q(z) ln
p(z,x;θ)q(z)

p(z ∣ x;θ)q(z)
dz

= ∫ q(z) ln(
p(x,z ∣ θ)

q(z)
)dz +∫ q(z) ln

q(z)

p(z ∣ x;θ)
dz

It is known that Kullback-Leibler divergence is not negative and hence F (q,θ) refers to the Evidence
Lower Bound (ELBO). ◻

2 Actually an inspiring perspective on this would be regarding z as local latent variables, one per observation, and θ
as (a d-dimensional vector and usually d is less than the sample size denoted by n) as global latent variables, which
intrinsically does not change with sample size.
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Remark 5.1 Alternatively, we may note that similar trick applies to the posterior with contingency
on data. Usually this is for the case where Bayesian techniques apply when our target is to obtain
the posterior mode, that is to maximize lnp(θ;x). Note that analogously we have

lnp(θ;x) = ∫ q(z) ln
p(θ;x)p(z ∣ θ;x)

p(z ∣ θ;x)
dz

= ∫ q(z) ln
p(z,θ;x)

p(z ∣ θ;x)
dz

= ∫ q(z) ln
p(z,θ;x)q(z)

p(z ∣ θ;x)q(z)
dz

= ∫ q(z) ln(
p(θ,z ∣ x)

q(z)
)dz +∫ q(z) ln

q(z)

p(z ∣ θ;x)
dz

Consequently this implies that EM algorithm still applies for the maximization of posterior with
contingency on data and the corresponding q(z) is replaced with q (z ∣ θOLD;x), which essentially
shares the same functional form with q (z ∣ x;θOLD) at each iteration.

Remark 5.2 A direct implication from Proposition 5.1 is that the objective F (q,θ) as the lower
bound of log marginal likelihood lnp(x;θ), the gap between lnp(x;θ) and F (q,θ) is KL distance
and hence maximizing ELBO minimizes KL, which is essentially the objective of Variational Bayes.

EM algorithm is essentially an iterative algorithm with parameters θ constantly updated in a scheme
such that θOLD → θNEW → θOLD⋯ At E-step, replacing q(z) with p(z ∣ x;θOLD) and substituting
back to (21) yields

F (θ, q) = ∫ p (z ∣ x;θOLD) ln(
p(x,z ∣ θ)

p (z ∣ x;θOLD)
)dz

= ∫ p (z ∣ x;θOLD) ln (p(x,z ∣ θ))dz −∫ p (z ∣ x;θOLD) ln (p (z ∣ x;θOLD))dz

= Q(θ,θOLD
) + const

Hence equivalently in the M-step, θ is updated such that

θNEW
= arg max

θ
Q(θ,θOLD

) (22)

To sum up, EM algorithm essentially relies on the following two iterative steps repeatedly in a
closed loop until difference between θNEW and θOLD is less than the tolerance rate specified.

E-step Compute p (z ∣ x;θOLD) and Q(θ,θOLD)
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M-step Evaluate
θNEW

= arg max
θ

Q(θ,θOLD
)

Example 5.1 Consider a Gaussian mixture with G components indexed by j = 1, . . . ,G and for
each component along with a specific observation xi we know exactly the density form fj(xi) and
denote the parameters as the probabilities assigned to each component, πj and ∑Gj=1 πj = 1, collected
in θ = {πj}

G
j=1. All these lead to the log marginal likelihood of observed data x as

lnp (x ∣ θ) =
N

∑
i=1

ln

⎡
⎢
⎢
⎢
⎢
⎣

G

∑
j=1

πjfj(xi)

⎤
⎥
⎥
⎥
⎥
⎦

(23)

An obvious difficulty for applying MLE with respect to this log marginal likelihood is the summation
over g as the input of ln(⋅). However this problem could be circumvented by introducing latent variable
z such that unobserved element contained in z indexed by zij is 0-1 variable indicating whether the
i-th unobserved component zi associated with xi is from the j-th component. Consequently the joint
log likelihood of x and z (sometime this is also referred to complete log likelihood) is

lnp (x,z ∣ θ) =
N

∑
i=1

G

∑
j=1

zij [lnπj + ln fj(xi)] (24)

Expectation of lnp (x,z ∣ θ) over z taken with respect to p (z ∣ x;θOLD), which is required for the
E-step, is given as

N

∑
i=1

G

∑
j=1

πOLD
j fj (xi)

∑
G
g=1 π

OLD
g fg (xi)

[lnπj + ln fj (xi)] (25)

Then for the M-step, we consider the following constrained optimization problem

max

N

∑
i=1

G

∑
j=1

πOLD
j fj (xi)

∑
G
g=1 π

OLD
g fg (xi)

[lnπj + ln fj (xi)]

s. t. π1 +⋯ + πG = 1

the standard Lagrangian technique works here with corresponding multiplier denoted as λ and the
related first order conditions for πj implies that

1

πj

N

∑
i=1

πOLD
j fj (xi)

∑
G
g=1 π

OLD
g fg (xi)

− λ = 0, 1 ⩽ j ⩽ G

14



and

πj =

N

∑
i=1

πOLD
j fj (xi)

∑
G
g=1 π

OLD
g fg (xi)

/λ

Taking summation over j on both sides of the above equation and using the required constraint solves
λ as

λ =

N

∑
i=1

G

∑
j=1

πOLD
j fj (xi)

∑
G
g=1 π

OLD
g fg (xi)

= N

Finally all the previous discussion yields that θ updated from θOLD to θNEW in the M-step is as
following

θNEW
=

⎛
⎜
⎜
⎝

N

∑
i=1

πOLD
1 fj (xi)

∑
G
g=1 π

OLD
g fg (xi)

/N,⋯,

N

∑
i=1

πOLD
G fj (xi)

∑
G
g=1 π

OLD
g fg (xi)

/N

⎞
⎟
⎟
⎠

(26)

A simple R code are provided for demonstrating the main logic of this procedure.

Example 5.2 Another direct application of EM algorithm is variable selection. Normally in
Bayesian literature this target is achieved by imposing “spike-and-slab” prior (which is essentially
a special case of Gaussian mixture) on coefficients and the corresponding importance weights of
different variables are relied upon the posterior updates (George and McCulloch, 1993, 1997; Ročková
and George, 2014). Specifically, we focus on the setting where there exists n × 1 response vector
(collection of observations of dependent variables), y; and potential variables (independent variables),
X = [x1, . . . ,xp], which is a n × p matrix. Temporarily a Gaussian linear model is assumed to relate
X to y. That is, we generally have the following specified normal density,

f (y ∣ X) = Nn (ιnα +Xβ, σ2In) (27)

As with many Bayesian variable selection approaches, a binary latent variables γ = (γ1, . . . , γp)
⊺ is

introduced where γi ∈ {0,1} and γi = 1 indicates that xi is included in model. The intrinsic logic for
the variable selection objective is that in combination with some suitable prior for α, β, σ and γ,
the induced posterior π (γ ∣ Data) = π (γ ∣ y,X) then summarizes all the postdata variable selection
uncertainty. In particular, (George and McCulloch, 1997, henceforth GM97) proposed the following
specified prior,

π (β ∣ σ,γ, v0, v1) = Np (0,Dσ,γ) (28)

where
Dσ,γ = σ

2 diag (a1, . . . , ap) .

with ai = (1 − γi)v0 + γiv1 for 0 ⩽ v0 < v1. Such a kind of specification implies that it is essentially a
Gaussian mixture with two components. GM97 recommended setting v0 and v1 to be small and large
values, respectively, to distinguish those βi values which warrant exclusion of xi from that inclusion
of xi. The key discussion corresponds closely to the specified distribution for π (γ ∣ θ). A natural

15



default choice for this would be the i.i.d. Bernoulli prior of the following form

π (γ ∣ θ) = θ∣γ∣ (1 − θ)p−∣γ∣ (29)

where
θ ∈ [0,1] and ∣γ∣ =∑

i

γi.

For the prior of θ, normally we adopt beta distribution such that

π (θ)∝ θa−1 (1 − θ)b−1

For the prior of σ2, GM97 proposes the use of inverse gamma prior

π (σ2 ∣ γ) = IG(
ν

2
,
νλ

2
)

where this inverse gamma prior takes the following functional PDF form 3,

(νλ/2)ν/2

Γ (ν/2)
(σ2)

−ν/2−1
exp(−

νλ

2σ2
)

Note that for any practical application of EM algorithm, our target is never to exactly pin down the
posterior distribution of latent variables but the posterior updates of parameters instead. Consequently
given our setting here, parameters are collected in (β,θ, σ) 4 and our ultimate target is geared
toward finding posterior modes of parameter posterior π (β,θ, σ ∣ y,X) rather than simulating
from the entire model posterior π (γ ∣ y,X).

Following the conventional procedure implemented in EM algorithm, maximization of π (β,θ, σ ∣ y,X)

is implemented indirectly by proceeding iteratively in terms of the “complete log likelihood” as we
did in the previous example, that is, lnπ (β,θ, σ,γ ∣ y,X), where the inclusion indicators collected
in γ are treated as “missing data”. More precisely, the whole procedure comprises the iterative
maximization of the following objective function

Q (β,θ, σ ∣ β(k),θ(k), σ(k)
) (30)

= Eγ ∣ ⋅ [lnπ (β,θ, σ, γ ∣ y,X) ∣ β(k),θ(k), σ(k),y]

where the operator Eγ ∣ ⋅(⋅) denotes the conditional expectation, that is,

Eγ ∣ β(k),θ(k),σ(k),y,X (⋅)

3 In general for inverse-gamma distribution with parameter α and β, the corresponding PDF (probability density
function) takes the form of βα

Γ(α)x
−α−1 exp (−β

x
), where x refers to the random variable.

4 Here we ignore the emphasis of α since generally it can be subsumed in β by treating it as the coefficient of fixed
constant.
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Specifically, (30) can be decomposed into the addition of a constant term and the following additional
two terms 5

Q1 (β, σ ∣ β(k),θ(k), σ(k)
)

= −
(y −Xβ)⊺ (y −Xβ)

2σ2
−
n + p + v + 2

2
ln (σ2) −

νλ

2σ2
−

1

2σ2

p

∑
i=1

β2i Eγ ∣ ⋅ [
1

v0(1 − γi) + v1γi
]

Q2 (θ ∣ β(k),θ(k), σ(k)
)

=

p

∑
i=1

ln(
θ

1 − θ
)Eγ ∣ ⋅γi + (a − 1) ln (θ) + (p + b − 1) ln(θ)

Thus in general we have

Q (β,θ, σ ∣ β(k),θ(k), σ(k)
) = C +Q1 (β, σ ∣ β(k),θ(k), σ(k)

) +Q2 (θ ∣ β(k),θ(k), σ(k)
) (31)

Such a kind of separability into two distinct functions yields a M-step that is obtained by optimizing
each function. To see why Q1(⋅) and Q2(⋅) take the demonstrated functional form respectively, firstly
we observe the generic fact that any well-defined posterior is proportional to the corresponding jointly
likelihood up to a constant which is the result of marginalizing out the parameters. The everything
remained is just obtained by taking log of the product of prior and and the likelihood of data given
specified parameter. Analogous discussion applies for Q2 (⋅). More specifically, for Q1(⋅), we have

f (y ∣ X) ⋅ π (β ∣ σ,γ, v0, v1) ⋅ π (σ2 ∣ γ)

↑ ↑ ↑

Nn (ιnα +Xβ, σ2In) Np (0,Dσ,γ) IG (ν
2 ,

νλ
2
)

Taking log of the above product yields the desired functional form of Q1(⋅); For Q2(⋅), we have

π (θ) ⋅ π (γ ∣ θ)

∝ θa−1 (1 − θ)b−1 θ∣γ∣ (1 − θ)p−∣γ∣ = θa−1 (1 − θ)p+b−1
p

∏
i=1

(
θ

1 − θ
)

γi

Taking log of the above formula yields the desired functional form of Q2(⋅)

(a − 1) ln (θ) + (p + b − 1) ln (1 − θ) +

p

∑
i=1

ln(
θ

1 − θ
)γi

hence in the E-step where γi is replaced with its corresponding conditional expectation, Eγ ∣ ⋅γi, we

5 It is a little bit different from the formula derived in GM97, where the multiplier before ln (σ2
) is given as n−1+p+ν

2
. I

personally hold the opinion that the formula given in GM97 should be a typo.
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obtain the desired functional form of Q2(⋅). From the previous discussion, two conditional expectation
plays the vital role in proceeding the E-step, thus Eγ ∣ ⋅ [

1
v0(1−γi)+v1γi

] and Eγ ∣ ⋅γi respectively. For
this reason we briefly discuss how this two conditional expectation is calculated,

● Eγ ∣ ⋅γi :
Eγ ∣ ⋅γi = P (γi = 1 ∣ β(k),θ(k), σ(k)

) = p⋆i

where
p⋆i =

ai
ai + bi

and

ai = π (β
(k)
i ∣ σ(k), γi = 1)P (γi = 1 ∣ θ(k))

bi = π (β
(k)
i ∣ σ(k), γi = 0)P (γi = 0 ∣ θ(k))

● Eγ ∣ ⋅ [
1

v0(1−γi)+v1γi
] :

Eγ ∣ ⋅ [
1

v0 (1 − γi) + v1γi
]

=
Eγ ∣ ⋅ (1 − γi)

v0
+
Eγ ∣ ⋅γi

v1
=

1 − p⋆i
v0

+
p⋆i
v1

≡ d⋆i

One attractive feature of the previously discussed setting is that all the required maximization in
M-step yields analytical solution so that β(k), θ(k) and σ(k) could be updated quickly to β(k+1), θ(k+1)

and σ(k+1) with β(k+1), θ(k+1) and σ(k+1) replaced by the corresponding optimal solution respectively.
Under some regular conditions, this sequence would converge at β̂, θ̂ and σ̂. Then based on these
estimated parameters, the conditional component inclusion probabilities are given by

P (γi ∣ β̂i, θ̂, σ̂) =
ci

ci + di
(32)

where

ci = π (β̂i, σ̂, γi = 1)π (γi = 1 ∣ θ̂)

di = π (β̂i, σ̂, γi = 0)π (γi = 0 ∣ θ̂)

Definition 2 α-Rényi divergence is defined for measuring the relative divergence between two
probability measures. Suppose α ∈ (0,1) and P and Q are two probability measures. Let µ be any
measure such that P ≪ µ and R≪ µ, for example µ = P +Q, then α-Rényi divergence is defined as
following

Dα (P,Q) =
1

α − 1
log∫ (

dP

dµ
)

α

(
dQ

dµ
)

1−α

dµ (33)
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Comprehensive discussion about α-Rényi divergence is available in Van Erven and Harremoës (2014).
An important convergence would be as following,

lim
α→0

1

α − 1
ln∫ pαq1−αdµ = − ln∫ 1{p>0}qdµ = − lnQ (p > 0)

lim
α→1

1

α − 1
ln∫ pαq1−αdµ = ∫ p ln(

p

q
)dµ

where p = dP
dµ and q = dR

dµ .

Remark 5.3 Essentially the justification for these two limits is based on the justification for
commuting the integration and the limit taken with respect to α. This is carefully discussed in
Van Erven and Harremoës (2014), where Lemma 1 and the corresponding derivation for Theorem
5 jointly justify such a kind of desired communication. The fundamental tool used for proving
these claims is monotone convergence theorem. Rather than discussing the proof rigorously here,
an important and useful observation would be that d

dαp
αq1−α = pαq1−α ln (

p
q), accordingly once

communication between integration and limit taken with respect to α is rigorously justified, a
heuristic demonstration of why the claimed limits hold is by applying L’Hôpital’s rule such that

lim
α→1

1

α − 1
pαq1−α = lim

α→1
pαq1−α ln(

p

q
) = p ln(

p

q
) .

Another useful facts are as long as P ≪ Q, then we have

• p < q almost surely holds with respect to Q.

• If we define xα = ∫ p
αq1−αdµ, then it is appropriate to have limα→1 ∫ p

αq1−αdµ = ∫ pdµ = 1.
More specifically, this convergence is depicted from different directions as following

∫ pαq1−αdµ = ∫ (
p

q
)
α

q dµ

α ↑ 1 xα ↓ 1 xα − 1 ⩾ lnxα → 0

α ↓ 1 xα ↑ 1 lnxα ⩾ xα − 1→ 0

where ↑ 1 refers to the convergence below 1 while ↓ 1 refers to the convergence above 1.

Consequently,

lim
α→1

1

α − 1
ln∫ pαq1−αdµ = lim

α→1

∫ pαq1−αdµ − 1

α − 1
= lim
α→1
∫
p,q>0

p − pαq1−α

1 − α
dµ (34)

and this implies as long as we are able to change the order of limits and integration and then taking
limit with respect to α by applying L’Hôpital’s rule yields

lim
α→1

Dα (P,Q) = KL (P,Q) (35)
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With this introduced α-Rényi divergence, we introduce the following concepts for later discussion

• Let Q denote the dominating measure for the family of distributions for data and hence
the associated Radon-Nikodym derivative (probability density function in some sense) is as
following

pθ =
dPθ
dQ

• θ ∈ Θ and Θ is equipped with proper σ-algebra T,M+
1 (Θ,T) refers to the set of all probability

distributions on measurable space (Θ,T). Accordingly, π ∈M+
1 (Θ,T) denotes prior.

• Likelihood as the function of θ is 6

Ln (θ) =
n

∏
i=1

pθ (xi)

• ∀ (θ,θ′), negative log-likelihood ratio is defined as following

rn (θ,θ′) =
n

∑
i=1

log
pθ′ (xi)

pθ (xi)

• Fractional posterior is then defined as following

πn,α (dθ ∣ xn1) =
e−αrn(θ,θ0)π(dθ)

∫ e−αrn(θ,θ0)π(dθ)π(dθ)
(36)

With these introduced concepts and notations, we summarize some important results discussed in
Alquier and Ridgway (2020):

Theorem 5.1 (PAC-Bayesian Inequality) For any α ∈ (0,1) and any ε ∈ (0,1),

P(∀ρ ∈M+
1(Θ), ∫ Dα (Pθ, Pθ0)ρ (dθ)

⩽
α

1 − α ∫
rn(θ,θ0)

n
ρ(dθ) +

KL(ρ, π) + log(1/ε)

n(1 − α)
) ⩾ 1 − ε (37)

This result originates from Catoni (2004, 2007) and is extended to variational approximation by
alternatively defining the following approximate posterior as

π̃n,α (⋅ ∣ xn1) = argmin
ρ∈F

{α∫ rn(θ,θ0)ρ (dθ) +KL (ρ, π)}

= argmin
ρ∈F

{−α∫
n

∑
i=1

log pθ (xi)ρ (dθ) +KL (ρ, π)}

6 xi refers to the i-th realization of random variables (either scalars or vectors) x.
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Corollary 5.1 (Concentration of VB approximation) For any α ∈ (0,1) and ε ∈ (0,1), with
probability at least 1 − ε

∫ Dα (Pθ, Pθ0) π̃n,α (dθ ∣ xn1)

⩽ inf
ρ∈F

{
α

1 − α ∫
rn (θ,θ0)

n
ρ (dθ) +

KL(ρ, π) + log(1/ε)

n(1 − α)
} (38)

Theorem 5.1 and Corollary 5.1 jointly leads to the following claimed main result in Alquier and
Ridgway (2020)

Theorem 5.2 For any fixed F ⊂M+
1 (Θ), if we assume that there exists εn > 0 such that

∫ KL (Pθ, Pθ0)ρn (dθ) ⩽ εn, ∫ E [log2 (
pθ(xi)

pθ0(xi)
)]ρn (dθ) ⩽ εn

and
KL (ρn, π) ⩽ nεn

Then for any α ∈ (0,1), for any (ε, η) ∈ (0,1)2, the following inequality holds

P

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫ Dα (Pθ0 , Pθ) π̃n,α (dθ ∣ xn1) ⩽
(α + 1)ε + α

√
εn
nη +

log( 1
ε
)

n

1 − α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⩾ 1 − ε − η (39)

Remark 5.4 There are some remarks to be emphasized here for discussing this main result.

• How ρn is selected. Define the following restricted area

B(r) = {θ ∈ Θ ∶ KL (Pθ0 , Pθ) ⩽ r, E [log2 (
pθ(xi)

pθ0(xi)
)] ⩽ r}

and then ρn is selected such that
ρn = π∣B(εn)

i.e. ρn is selected as the π restricted to B(εn) and hence for this case the required condition
rewrites as following

KL (ρn, π) = − logπ (B(εn)) ⩽ nεn

• An alternative explanation for the results implied from this theorem is that Expected (with
respect to VB posterior) α-Rényi divergence of data distribution associated with different θ
cannot be that divergent with probability 1 − ε − η and this probability is with respect to data.

Alternatively as we have mentioned earlier that we are allowed to regard θ as latent variables
but temporarily treat it as the fixed parameter. By doing so, it is appropriate to redefine the
evidence lower bound (ELBO) by simultaneously accounting for both local latent variables z and
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global latent variables θ. This trick treating the global variable θ as temporarily fixed also justifies
our discussion temporarily within frequentist domain and later the following discussion about how
Variational Frequentist and Variational Bayes are connected. To formally set up the connection, it
would be helpful to summarize the associated definitions as following

[Place Table 1 about here]

5.2 Variational Expectation Maximization

The key difference between Variational Expectation Maximization (VEM) and Expectation Maxi-
mization (EM) is mainly at E-step where there is an implicitly crucial assumption that p(z ∣ x;θOLD)

is available so that q(z) can be replaced with p(z ∣ x;θOLD). However this is not generally the case
when p(z ∣ x;θOLD) is tractable, hence we turn to find the optimal functionality of q(⋅) instead by
relying on the assumption that q(z) =∏i q(zi), then ELBO can be factorized as following

F (q,θ) = ∫ q(z) ln(
p(z,x;θ)

q(z)
)dz

= ∫ q(zj)
⎛

⎝∫ ∏
i≠j

q(zi) lnp(z,x;θ)
⎞

⎠
∏
i≠j

dzidzj −∫ q(zj) ln q(zj)dzj −∑
i≠j
∫ q(zi) ln q(zi)dzi

= ∫ q(zj) ln(
exp (⟨lnp(z,x ∣ θ)⟩i≠j)

q(zj)
)dzj −∑

i≠j
∫ q(zi) ln q(zi)dzi

= ∫ q(zj) ln(
p̃i≠j

q(zj)
)dzj +H(zi≠j) + const

= −KL (qj∥p̃i≠j) +H(zi≠j) + const

where p̃i≠j is normalized pdf. Since K-L divergence is non-negative, with zi≠j to be integrated out
under proper expectation measure, the sufficient and necessary condition for ELBO to be maximized
is KL (qj∥p̃i≠j) = 0, which sufficiently holds when

q(zj) = p̃i≠j ∝ exp (⟨lnp(z,x ∣ θ)⟩i≠j)

or in other words the log of optimal density q∗j (zj) is

ln q∗j (zj) = ⟨lnp(x,z;θ)⟩i≠j + const (40)

Consequently, the EM algorithm is given by the following two steps

Variational E-step Evaluate qNEW(z) to maximize F (q,θOLD) solving (40)

22



Variational M-step Find
θNEW

= arg max
θ

F (qNEW,θ)

In comparison to conventional data used for economics and finance research, information encoded in
textual data is relatively more rich and serves as good complement to the conventional structured
data. Recently there seems to be explosion of social science researches using text data directly or
text data extracted from videos. One reason that there were relatively less empirical researches in
this norm is the intrinsic features that data of these kinds are high dimensional while most of the
analysis tool is not as powerful as the available analysis tools nowadays. Conventionally, classical
MCMC methods serve as the major tools for the application of Bayesian methods in practice but
one fatal problems encountered in the MCMC is its deteriorated computational efficiency especially
for the case when both the covariates dimension and sample size are large. Variational Bayes (VB)
by comparison replaces the conventional MCMC sampling procedure with optimization problem
described previously so that to some extent alleviates the computational inefficiency, and VB is
nowadays is increasingly becoming the major tools for many computationally demanding applications
such as image and video processing, and natural language processing (NLP).

Unstructured data recorded in texts, videos can reveal some useful information for financial
market and one important mechanism through which the unstructured data play the pivotal role is
that the people’s emotion revealed from data is contagious and hence generates impact on people’s
decisions corresponding to economic activities, this is also the mechanism referred by some existing
literature as social transmission. To some extent, such a hypothesized mechanism is quite natural
since psychologically people’s subjective perceptions are easily influenced by others so are associated
economic behaviours.

Development in modern information technologies and computer science provides analysis tools
both convenient and powerful to extract information collected in aforementioned unstructured data
like texts and videos. Platforms like Google Cloud and Microsoft Azure both provide extensive
support for modern data science language such as R and Python for natural language processing.
Besides, community within the ecosystems of both R and Python have contributed a lot of integrated
convenient packages such as tm, topicmodels, googlelanguageR, tuneR, av for R and youtube_dl

for Python. Gentzkow, Kelly, and Tady (2019) recently provides a relatively comprehensive review
about how the recently developed techniques have been applied for analysing textual data in
economics and finance.

As what is mentioned previously, data extracted from text or video is highly unstructured and
hence to make it manageable, some preliminary procedures have to be implemented. One important
measure commonly used in textual analysis for this purpose is called “term frequency-inverse
document frequency” (abbreviated as tf-idf). Generally, it is defined as following

tf-idf: tfij × idfj (41)
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where tfij refers to the term frequency of word j in document i such that

tfij =
cij

∑k cik

with cij defined as the count of occurrences of word j in document i; And idfj refers to: log(n/dj)

with
n : total number of documents

dj : ∑i 1(cij > 0), 1(⋅) is indicator function.

Since in general we want to make data extracted from text reveal distinguishable information, those
words rarely appearing in each document and commonly appearing in most or all of the documents
should be eliminated. This can be achieved by setting a threshold value for the tf-idf measure
since by construction small tfij implies that the j-th word is rare in document i and similarly small
idfj implies that the j-th word is relatively much common in all the documents. Essentially tf-idf

as the transformed measure defines the most representative terms in a given document to be those
that appear infrequently overall, but frequently in that specific document (see Engle et al., 2020,
henceforth EGLKS2020). Based on the tf-idf measure, EGLKS2020 constructs a climate change
index by calculating the “cosine similarity” between tf-idf measures for “climate change vocabulary
(CCV)” and each daily The Wall Street Journal (WSJ) edition. Another index referred to Crimson
Hexagon’s negative sentiment climate change index is constructed along with climate change index
as well. One reason motivating the construction of Crimson Hexagon’s (CH) negative sentiment
climate change index in companion with climate change index for comparison, as articulated in
EGLKS2020, is that the construction of WSJ Climate Change News Index implicitly embeds the
assumption that there is no discrepancy between good news and bad news about climate changes
given the coverage of all WSJ corpus, which is potentially at the risk of inaccurately capturing the
positive news about climate change. Consequently, Crimson Hexagon’s (CH) negative sentiment
climate change index as one alternative for addressing this concern is forwarded in EGLKS2020
by confining the focus specifically on negative climate change news. Particularly, the CH Negative
Climate Change Index is constructed as the “share of all news articles that are both about ‘climate
change’ and that have been assigned to the ‘negative sentiment’ category.”

5.2.1 Discussion about parametrized optimization

It is obvious from the previous discussion that optimization plays the pivotal role in the implemen-
tation of VB method and consequently we may briefly discuss the general optimization procedure
we often implement in practice. Stochastic gradient ascent method proposed in Robbins and Monro
(1951) is widely used in practice for solving the optimization in M-step. For notation simplicity
and consistency while emphasizing the associated dependency of ELBO on parameters collected in
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φ, we denote the parametrized ELBO as

F(φ) = F (q,φ,θ) =∫ qφ(z) ln(
p(x,z ∣ θ)

qφ(z)
)dz

where we emphasize that F(⋅) only depends on the φ with θ fixed at constant and then we are able
to apply stochastic approximation method by calculating the unbiased gradient estimates ∇φF(φ)

⋀

.
To obtain the explicit formula for ∇φ, it would be useful to note a key fact that

Eq [∇φ ln qφ(z)] = Eq [
1

qφ(z)
∇φqφ(z)]

= ∫ qφ(z)
1

qφ(z)
∇φqφ(z)dz

= ∫ ∇φqφ(z)dz = 0
⎛

⎝
since∫ qφ(z)dz = 1

⎞

⎠

This fact is also referred to the so-called log-derivative trick. With this observed fact, we are able to
derive as following

∇φF(φ) = ∫ ∇φqφ(z) [lnp(x,z ∣ θ) − ln qφ(z)]dz −∫ qφ(z)
1

qφ(z)
∇φqφ(z)dz

= Eq [∇φ ln qφ(z) (lnp(x,z ∣ θ) − ln qφ(z))] (42)

since gradient calculated as in (42) is expectation taken with respect to qφ(⋅), it is easy to calculate
the estimated gradient ∇φF(φ)

⋀

unbiasedly using samples from qφ(z) provided the analytical form
of qφ(z) and the corresponding sampling from qφ(z) is readily available. Then the basic idea of
stochastic gradient descent method is as following. With F (φ) as objective function to optimized
and assume that under some regular conditions F (φ) is differentiable, thus ∇φF (φ) is its gradient
and ∇φF(φ)
⋀

, we start from an initial value φ(0) and implement the following recursion for t = 0,1, . . .

φ(t+1)
= φ(t)

+ ρt ○ ∇φF (φ(t))
⋀

until a certain stopping criteria is satisfied. It can be justified that as long as ρt, t ⩾ 0 (learning
rate) satisfies Robbins-Monro conditions, that is ∑t ρt =∞ and ∑t ρ2t =∞, then convergence of the
sequence φ(t) will be to local optimum. There are many discussions on choosing learning rate ρt in
literature and ADADELTA method (Zeiler, 2012) is one relatively easy to implement and hence
widely used in practice. Specifically for this setting at iteration t + 1, the i-th element φi of φ is
updated as

φ
(t+1)
i = φ

(t)
i +∆φ

(t)
i
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where the incremental step size ∆φ
(t)
i is ρ(t)i g

(t)
φi

and g(t)φi denotes the i-th component ∇φF (φ(t))
⋀

with ρ(t)i g
(t)
φi

adaptively selected as

ρ
(t)
i =

√

E (∆2
φi
)
(t−1)

+ ε
√

E (g2φi)
(t)

+ ε

where ε is a small positive constant and E (∆2
φi
)
(t), E (g2φi)

(t) are decayed running average of ∆φ
(t)2

i

and g(t)
2

φi
respectively, defined by

E (∆2
φi
)
(t)

= ζE (g2φi)
(t−1)

+ (1 − ζ)∆φ
(t)2

i

E (g2φi)
(t)

= ζE (g2φi)
(t−1)

+ (1 − ζ) g
(t)2

φi

Typically tuning parameters are specified as ε = 10−6 and ζ = 0.95 the recursion is initialized at
E (∆2

φi
)
(t)

= E (g2φi)
(t)

= 0.
Another way for implementing optimization is by directly minimizing the divergence between the

approximate distribution and target posterior distribution. For discussion simplicity, introducing
the following shorthand notation

D (q) ∶= D (q, px) (43)

D̃ (q) ∶= D (q, f) (44)

where px as the shorthand notation is in consistence with the aforementioned target posterior
p (z ∣ x;θ) and correspondingly f denotes the joint density of observed data x and latent variables z

(In other words, D̃ (q, f) refers to the negative of ELBO). Given the relation demonstrated in (20),
our objective is to minimize D (q) by choosing q. Gradient Boosting is one frequently used method
for this objective and specifically for this case the rough idea for implementing gradient boosting
is by considering perturbation from q to (1 − ε)q + εh. It would be useful to derive the functional
derivative of D (q), denoted by ∇D (q), a direct derivation with shorthand notation is as following 7

∇D (q) = ∇q (q log
q

f
)

= log
q

f
+ q

f

q

1

f
= log

q

f
+ 1

Recall the gradient boosting dynamics we introduced previously,

qt = (1 − αt) qt−1 + αtht

7 Here we emphasize that q as the function value should be regarded as a univariate variable
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and with ε→ 0, Taylor expansion with respect to ε yields

D ((1 − ε)q + εh) = D (q + (h − q)ε)

= D (q) + ε⟨h − q, g⟩ + o (ε2)

Consequently for a fixed q we just need to choose h to minimize ⟨h, g⟩ = ⟨h,∇D (q)⟩ and this also
suggests that intuitively we need to approximately choose h to match the “negative” direction
∇D (q), i.e. −∇D (q) if possible. And with the derived ∇D (q) we focus on the following optimization
problem instead

D (qt) =D (qt−1) + αt⟨ht, log (qt−1/f)⟩ − αt⟨qt−1, log (qt−1/f)⟩ + o (α
2
t ) (45)

5.2.2 Application of variational bayes method

Recently there are some emerging literature discussing the application of variational expectation
maximization method in estimating time-varying parameter models (TVP) (Kowal et al., 2019;
Koop and Korobilis, 2020, henceforth KK20) based on the recent progress (Wang and Blei, 2019;
Alquier and Ridgway, 2020) in theoretically justifying the asymptotic properties of variational bayes
method. Following discussion is mainly about the basic data generating process (DGP) under TVP
framework and how variational bayes method is applied for estimating the parameters specifying
TVP modelling. Data is assumed to be generated as following

yt = β1tx1t + β2tx2t + . . . + βptxpt + σtεt, εt ∼ N (0,1) (46)

xj,t ∼ N (0,1), j = 1, . . . , p (47)

βj,t = sj,t × θj,t, sj,t is 0-1 indicator variable (48)

θj,t = θj + ρ (θj,t−1 − θj) + δηj,t, ηj,t ∼ N (0,1) (49)

log (σ2t ) = σ2 + φ (log (σ2t−1) − σ
2) + ξζt, ζt ∼ N (0,1) (50)

θj,0 = θj , log (σ20) = σ
2 (51)

Generally the model specified under the time-varying parameter setting is as following,

yt = Xtβt + εt (52)

βt = βt−1 + ηt (53)

where βt = (β1t, . . . , βpt)
⊺; εt ∼ N (0, σ2t ) with σ2t as time-varying parameter; ηt ∼ N (0,Wt) with

Wt as diagonal matrix Wt = diag (w1t, . . . ,wpt). For later description simplicity, we introduce the
notation wt = [w1t, . . . ,wpt]

⊺ as the p × 1 vector collecting diagonal elements of Wt. To see how
variational Bayes method is applied in this time-varying framework. It is the generally the interests
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of researchers to recover p (βt,wt ∣ y1∶t) from Bayesian perspective. We further assume the factorized
structure for the variational density

q (βt,wt ∣ y1∶t) = q (βt ∣ y1∶t)
p

∏
j=1

q (wj,t ∣ y1∶t) (54)

Similar logic applies to get the optimized functional form of ELBO akin to the the discussion of
generic variation bayes method, which yields that ELBO is maximized by iterating through the
following recursions

q (βt ∣ y1∶t) ∝ exp
⎛

⎝
∫ log p (βt,wt ∣ y1∶t)

p

∏
j

q (wj,t ∣ y1∶t)dwt
⎞

⎠

∝ exp
⎛

⎝
∫ log p (yt,βt,wt ∣ y1∶t−1)

p

∏
j

q (wj,t ∣ y1∶t)dwt
⎞

⎠
(55)

q (wj,t ∣ y1∶t) ∝ exp(∫ log p (βt,wt ∣ y1∶t) q (βt ∣ y1∶t)dβt)

∝ exp(∫ log p (yt,βt,wt ∣ y1∶t−1) q (βt ∣ y1∶t)dβt) , j = 1, . . . , p (56)

Then the following recursive relationship can be set up

q (βt ∣ y1∶t) ∝ exp [Eq(wt∣y1∶t) (log p (yt,βt,wt ∣ y1∶t−1))]

= exp{Eq(wt∣y1∶t) log [p(yt ∣ βt,wt)p(βt ∣ y1∶t−1)p(wt ∣ y1∶t−1)]}

= p (yt ∣ βt,wt) exp{Eq(wt∣y1∶t) [log p (βt ∣ βt−1) + log q (βt ∣ y1∶t−1)]} (57)

× exp{Eq(wt∣y1∶t) [log p (wt ∣ y1∶t−1)]} × [log q (βt ∣ y1∶t−1)]
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∝ const

As suggested by George and McCulloch (1993), variable selection under this high-dimensional and
dynamic setting is implemented based on the following spike-and-slab prior specification on the
time-varying coefficients,

βj,t ∣ γj,t, τ
2
j,t ∼ (1 − γj,t)N (0, cτ2j,t) + γj,tN (0, τ2j,t) (58)

γj,t ∣ π0,t ∼ Bernoulli (π0,t) (59)
1

τ2j,t
∼ Gamma (g0, h0) (60)

π0,t ∼ Beta(1,1). (61)

That is , If γj,t = 1, the prior for βj,t has a normal prior with zero mean and variance τ2j,t, while
if γj,t = 0 the prior variance becomes cτ2j,t which also implies that whenever variable selection is
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required c has to be set as c→ 0. But along with (58), we also have dynamic transition such that

βj,t ∣ βj,t−1,wj,t ∼ N (βj,t−1,wj,t) (62)

Then it is possible for us to combine the prior information imposed on βj,t jointly with (58) and
(62) such that

βt = F̃tβt−1 + η̃t (63)

where

η̃t ∼ N (0,W̃t)

W̃t = [E (Wt)
−1
+E (Vt)

−1
]
−1

F̃t = W̃ ×E (Wt)
−1

Wt = diag (w1,t, . . . ,wp,t)

Vt = diag (v1,t, . . . , vp,t)

A quick demonstration for the replicated Monte Carlo experiment of KK20 is as following

[Place Figure 2 about here]

[Place Figure 3 about here]

My implementation instead is based on the optimized hybrid R and C++ codes relying on Mircrosoft
R Open distribution. This implementation automatically implements parallel matrix computation
based on the C++ Armadillo linear algebra template and consequently would improve computational
efficiency significantly on multi-cores system. Armadillo as the C++ library for linear algebra and
& scientific computing is initially developed and actively maintained by Conrad Sanderson from
Griffith University. More details about hybrid coding in R and C++ are covered comprehensively in
the classic textbook Eddelbuettel (2013). The associated R package vbdvsarmadillo and more
details about implementation are both available at

https://www.yaohanchen.com/post/vbdvsrcpp/

5.3 Variational Bayes with Intractable Likelihood

As in Tran et al. (2017), let us consider the a generic scenario where there are observed random
variables y, latent variables z and the associated parameters θ ∈ Θ. Within the Bayesian analytical
framework, in general we are interested in

π(θ) = p(θ ∣ y)∝ p(y ∣ θ)p(θ) (64)
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which is usually referred to the posterior distribution on which we make posterior inference. However,
p(y ∣ θ) is required for constructing sampler like MCMC, which under some circumstance is not
exactly available. Hence variational bayes method instead provides an alternative for recovering
π(θ) when the the likelihood function p(y ∣ θ) is not available. The key idea is discussed as following.
In fact, we can firstly apply filtering techniques like particle filter to estimate the likelihood function
p(y ∣ θ), denoted by p̂N(y ∣ θ) with N specifying the number of particles used for estimating, and
we use z to denote the difference between the estimated likelihood function and the true likelihood
function in log scale such that

z = log p̂N(y ∣ θ) − log p(y ∣ θ)

which is the form that we can alternatively write as p̂N(y ∣ θ) = ezp(y ∣ θ). Given the unbiasedness
of this estimated likelihood function, we thus have the following fact

∫ ezgN(z ∣ θ)dz = 1

where gN(z ∣ θ) refers to the density function of random variable z conditional on parameter θ.
With this newly introduced random variable z, we can define the following augmented likelihood
function πN(θ,z) on Θ ×R, 8

πN(θ,z) =
p(θ)p(y ∣ θ)ezgN(z ∣ θ)

p(y)
= π(θ)ezgN(z ∣ θ). (65)

From which we can derive that

log p(y) = log [
p(θ)P (y ∣ θ)ezgN(z ∣ θ)

πN(θ,z)
]

= log [
p(θ)p̂N(z ∣ θ)

qλ,N(θ,z)
] + log [

qλ,N(θ,z)gN(θ,z)

πN(θ,z)
] (66)

where qλ,N(θ,z) is the correspondingly introduced density function over the space of θ and z. Hence
taking integration on both sides over θ, z with respect to qλ,N(θ,z) on both sides of the above

8 Augmented likelihood function defined here is guaranteed to be well-defined density function given that ∫ ezgN(z ∣
θ)dz = 1 and π(θ) is well-defined posterior. In other words, integration of πN(θ, z) over θ and z is exactly equal 1.
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equation yields

log p(y) =∫ qλ,N(θ,z) log [
p(θ)p̂N(z ∣ θ)

qλ,N(θ,z)
]dθdz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LB(λ)

+∫ qλ,N(θ,z) log [
qλ,N(θ,z)gN(θ,z)

πN(θ,z)
]dθdz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
KL(λ)

(67)

Remark 5.5

• qλ,N(θ,z) as the constructed density function can especially take the following form

qλ,N(θ,z) = qλ(θ)gN(θ,z)

and this structure separates the dependence of λ on N and hence could bring some convenience,
this will be discussed later.

• KL(λ) is the associated Kullback-Leibler divergence by comparing qλ,N(θ,z) with the true
augmented likelihood function πN(θ,z). This is a function of λ and always no less than 0.

• LB(λ) as the function of λ is justified as the lower bound of the marginal log likelihood
log p(y) given the fact that KL(λ) ⩾ 0. LB(λ) is later applied for checking the convergence of
gradient.

5.4 Dynamic Shrinking Process

Before we move on to the application of variational bayes method, it necessary to briefly discuss a
related branch of literature recently appearing in statistics discussing shrinkage dynamically. One of
the representative work is done by Kowal et al. (2019), and the following discussion is mainly based
on the framework of this paper. All the stuff to be discussed is closely related with the concepts
about global-local prior defined as following

ωt ∣ τ, λt
indep
∼ N (0, τ2λ2t ) , (68)

And ht = log (τ2λ2t ) is a process following the general dependent data model

ht = µ + ψt + ηt, ηt
iid
∼ Z(α,β,0,1) (69)

where
µ = log (τ2)

ψt + ηt = log (λ2t )
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and Z(α,β,µz, σz) denotes the Z-distribution with density function specified as following

[z] = [σzB(α,β)]−1 {exp [(z − µz) /σz]}
α
{1 + exp [(z − µz) /σz]}

−(α+β) , z ∈ R (70)

and B(⋅, ⋅) refers to the Beta function. Then the dynamic shrinkage process is modelled as following

ht+1 = µ + φ(ht − µ) + ηt, ηt
iid
∼ Z(α,β,0,1) (71)

Remark 5.6 ψt plays the role governing the adaptive shrinkage process with the following two
emphasized special case

• Replacing ψt in (70) with φ(ht − µ) in (71) yields equivalence.

• Replacing ψt in (70) with z⊺t α for a vector of predictors yields the equivalence for linear
regression framework.

Remark 5.7 Z-distribution arises from Beta distribution by the following discussion

• B(α,β) = ∫
1

0
uα−1(1 − u)β−1du = ∫

1

0
(1 − u)α−1uβ−1du = B(β,α).

• Define u = 1
1+exp[(z−µz)/σz]

, we can readily check the [z] of the previous functional form is
indeed a probability density function,

∫ [σzB(α,β)]−1 {exp [(z − µz) /σz]}
α
{1 + exp [(z − µz) /σz]}

−(α+β) dz

=
1

σzB(α,β)∫
1

0

(1 − u)α uβ∣
−σz

(1 − u)u
∣du =

σz
B(α,β)∫

1

0

(1 − u)α−1 uβ−1du = 1

• The first moment of Z-distribution is µz,

∫ [σzB(α,β)]−1 {exp [(z − µz) /σz]}
α
{1 + exp [(z − µz) /σz]}

−(α+β) z dz

=
1

σzB(α,β)∫
1

0

(1 − u)α uβ [log (
1

u
− 1)σz + µz] ∣

−σz
(1 − u)u

∣ du = µz
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where we use the fact that

1

B(α,β) ∫
1

0

(1 − u)α−1 uβ−1 log (1 − u) du =
1

B(α,β) ∫
1

0

uα−1 (1 − u)β−1 logu du

= ψ(α) − ψ(α + β)

1

B(α,β) ∫
1

0

(1 − u)α−1 uβ−1 logu du = ψ(β) − ψ(β + α)

which implies that the first moment of Z(α,β,µz, σz) should be ψ(α)−ψ(β)+µz and hence it
is symmetric with the origin concentrating on µz if and only inf α = β. ψ(⋅) refers to digamma
function, which is essentially the logarithm derivative of gamma function.

Remark 5.8 Some useful discussion about special distributions

• If specifically a random variable is following Z distribution such that η ∼ Z (α,β,µz,1), µz ∈ R.
Then κ = 1/ (1 + exp (η)) ∼ TPB (β,α, exp(µz)), where κ ∼ TPB (β,α, γ) denotes the three
parameter Beta distribution (Armagan et al., 2011) with density specified as following

[κ] = [B(β,α)]−1γβκβ−1(1 − κ)α−1[1 + (γ − 1)κ]−(α+β), κ ∈ (0,1), γ > 0 (72)

Proof. Recall that η ∼ Z (α,β,µz,1) has the following distribution with σz = 1

[z] = [σzB(α,β)]−1 {exp [(z − µz) /σz]}
α
{1 + exp [(z − µz) /σz]}

−(α+β)

which implies that if we define λ2 = exp (η), then

[λ2] ∝ (λ2)
−1

{exp [log (λ2) − µz]}
α
{1 + exp [log (λ2) − µz]}

−(α+β)

∝ (λ2)
α−1

[1 + λ2/ exp (µz)]
−(α+β)

and for κ = 1/ (1 + λ2),

[κ] ∝ κ−2 [κ−1 − 1]
α−1

[1 + (κ−1 − 1) / exp (µz)]
−(α+β)

∝ κ−2−(α−1)(1 − κ)α−1 {κ−1 [κ exp (µz) + (1 − κ)]}
−(α+β)

∝ (1 − κ)α−1κβ−1 [κ exp (µz) + (1 − κ)]−(α+β)

◻

• In a general framework, we consider λ2 distributed with density

[λ2]∝ (λ2)
α−1

(1 + λ2)
−(α+β)

, λ > 0 (73)
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which is referred to inverted-Beta distribution, IB(β,α). Similar to the previous discussion,
we can show that κ = 1/ (1 + λ2) ∼ Beta (β,α).

Proof.

[κ] ∝ κ−2 (
1

κ
− 1)

α−1

(
1

κ
)
−(α+β)

∝ (1 − κ)α−1 κ−2+1−α+α+β = (1 − κ)α−1 κβ−1,

◻

• Previous discussion hence can be summarized as following claim

λ2 ∼ IB(β,α)⇔ κ = 1/ (1 + λ2) ∼ Beta(β,α)⇔ η = log (λ2) = log (κ−1 − 1) ∼ Z(α,β,0,1).

Let us temporarily focus on the following process and discuss some associated properties

κt+1 =
1

1 + τ2λ2t+1
(74)

The following theorem plays the pivotal rule

Theorem 5.3 For the dynamic process specified as in (71), the conditional prior distribution of
κt+1 is

[κt+1 ∣ {κs}s≤t , φ, τ] ∼ TPB (β,α, τ2(1−φ) [
1 − κt
κt

]
φ

) (75)

Proof. Recall the dynamic process specified as in (71), we have

[ht+1 ∣ ht, φ, µ] ∼ Z (α,β,µ + φ (ht − µ) ,1)

By using the results discussed in the aforementioned remarks, we have the conditional distribution
of κt+1 is

[κt+1 ∣ ht, φ, µ] ∼ TPB (β,α, exp (µ + φ (ht − µ))) (76)

◻
Theorem 5.4 For the dynamic process specified as in (71) and α = β = 1

2 , the conditional prior
distribution satisfies

P (κt+1 < ε ∣ {κs}s≤t , φ)→ 1 (77)

as κt → 0 or any fixed ε ∈ (0,1) and φ ≠ 0

It is worthwhile discussing Pólya-Gamma distribution for introducing techniques mentioned later
that have widely discussed in literature such as Barndorff-Nielsen et al. (1982) and Polson et al.
(2013). The Pólya-Gamma distributions, denoted bt PG(b, c) is a subset of the class of infinite
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convolutions of gamma distributions. As a special case, PG(1,0) is referred to the carefully chosen
element of the the class of infinite convolutions of exponentials. In general, we have the following
factorization, all the listed results are the consequence of Weierstrass factorization theorem

sin (πz) = πz
∞

∏
k=1

(1 − (
1

k
)
2

)

cos (πz) =
∞

∏
k=0

⎛

⎝
1 − (

z

k + 1
2

)

2
⎞

⎠

sinh (z) = z
∞

∏
k=1

(1 +
z2

(πk)2
)

cosh (z) =
∞

∏
k=1

(1 +
z2

(πk − π/2)2
)

Based on these facts implied from Weierstrass factorization and that

• If a random variable ω is distributed following PG(1,0), we are able to obtain the Laplace
transform (with characterization function evaluated at it, where i denotes imaginary unit) as
following

E [exp (−ωt)] = cosh−1 (
√
t/2)

Moreover, if ω is distributed following PG(b,0), the corresponding Laplace transform is as
following

E [exp (−ωt)] =

∞

∏
k=1

(1 +
t

2π2 (k − 1/2)2
)

−b

=
1

coshb (
√
t/2)

. (78)

• Gamma distribution denoted as Ga(α,β), the characterization function generally takes the
following form

(1 −
iτ

β
)
−α

and accordingly with τ evaluated at it (complex number with only imaginary part), we have
Laplace transform of Gamma distribution as following

(1 +
t

β
)
−α

Replacing α = b and β = 1 directly implies that Laplace transform of Ga(b,1) is

(1 + t)−b
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• Suppose that random variable ω is constructed as following

ω
D
ÔÔ

1

2π2

∞

∑
k=1

gk

(k − 1/2)2

and gk ∼ Ga(b,1) (gk are mutually independent), then given that the Laplace transform of
Ga(b,1) is (1 + t)−1, we have the Laplace transform of this constructed random variable ω
takes exactly the form of (78). This is why ω refers to Pólya-Gamma distribution.

As for the extension from PG(b,0) to PG(b, c), just introduce the following density function for
PG(b, c).

p(ω ∣ b, c) =
exp (− c

2

2 ω)p(ω ∣ b,0)

Eω {exp (− c
2

2 ω)}
(79)

where Eω is taken with respect to p(ω ∣ b,0). Based on the detailed discussion in Polson et al. (2013)
(equation (6) specifically), it is possible to demonstrate that ω ∼ PG(b, c) is equivalent as following

ω
D
ÔÔ

∞

∑
k=1

Ga(b,1)

dk
=

1

2π2

∞

∑
k=1

Ga(b,1)

(k − 1
2
)
2
+ c2/ (4π2)

(80)

5.5 Quick note EB coverage interval

Useful facts summarized from (Morris, 1983; Carlin and Louis, 2000), If we specify likelihood as
normal such that f(y ∣ θ) = 1

σ
√
2π

exp (−
(y−θ)2

2σ2 ), and θ ∼ N (µ, τ2), θ ∈ R, µ ∈ R. Furthermore, we
assume that σ is a constant positive known parameter and µ, τ are known hyperparameters as well.
The posterior of θ for this specification is

p (θ ∣ y) = N
⎛

⎝
θ
RRRRRRRRRRR

σ2µ + τ2y

σ2 + τ2
,
σ2τ2

σ2 + τ2
⎞

⎠

For a specific setting (µ = 0), EB estimator for θi is given as wEBYi with wEB = τ2

σ2+τ2 . we want
to check whether θi is contained in a posterior stochastic interval for a specific critical value χ
(in some sense, χ could be interpreted as radius of neighbourhood with its center on wEBYi). Or
in other words, non-coverage posterior confidence interval refers to those stochastic intervals, CI,
wEBYi ± χ ⋅wEBσ in which a fixed θi is not contained. All these intervals correspond to the case

∣θi −wEBYi∣ ⩾ χ ⋅wEBσ⇔ ∣
θi −wEBYi
wEBσ

∣ ⩾ χ

But note that
E [wEBYi − θi] = (wEB − 1) θi Var [wEBYi − θi] = w

2
EBσ

2

hence the corresponding defined statistics wEBYi−θi
wEBσ

is normally distributed with mean equal to bi
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and variance equal to 1, where bi is of the following form

bi =
(wEB − 1)θi
wEBσ

which justifies the definition such that

θi −wEBYi
wEBσ

− (−bi) = Z ∼ N (0,1) and ∣
θi −wEBYi
wEBσ

∣ = ∣Z − bi∣

and the claim that probability of non-coverage is

r(bi, χ) = P(∣
θi −wEBYi
wEBσ

∣ ⩾ χ) = P (∣Z − bi∣ ⩾ χ) = Φ (−χ − b) +Φ (−χ + b) (81)

where Φ(⋅) denotes the cdf of standard normal distribution. Φ(⋅) is differentiable and hence r(bi, χ)
is differentiable w.r.t. bi, which is important for constructing the optimal functional form of r (b, χ).
Note for the all the previous discussion, we keep our discussion based on fixing θi. Under Bayesian
framework or the scenario where random effect is allowed, bi by definition as the function of θi
inherits the randomness from θi. In general θi can follow any form of feasible distribution but
we obtain our EB estimator by pretending imposing normality. As the result, once we consider
integrating out the uncertainty from bi, which is actually inherited from θi, we just impose the
structure that bi ∼ F , where F is used for generally describing the distribution of bi.

Remark 5.9

• Given that Z as the standard normal distribution is symmetric on R, r(b, χ) is symmetric in
b.

• For all t ⩾ 0, we can define r0(t, χ) = r(
√
t, χ) and hence the following two optimization

problems are equivalent

sup
F

EF [r(t, χ)]

s. t. EF [t2] =m2

⇔
sup
F

EF [r0(t, χ)]

s. t. EF [t] =m2

(82)

and we denote the corresponding optimal value as ρ(m2, χ).

• The following statement (or lemma) discussed in Carolan (2002) gives a relatively formal
definition about least concave majorant for the univariate case.
Claim: Suppose g is a function defined on a set containing [a, b], where a can equal −∞ or b
can equal ∞. Then g∗ defined as the least concave majorant of g for t ∈ [a, b] is

g∗(t) = sup
a≤x1≤t

sup
t≤x2≤b

{
(x2 − t)g(x1) + (t − x1)g(x2)

x2 − x1
} (†)
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where 0/0 is defined as g(t) when x1 = x2 = t. Alternatively, we can concisely define g∗ as

g∗(t) = inf {g̃(t) ∶ g̃t ⩾ g(t), g̃ concave} .

• Let r̄(t, χ) be the least concave majorant of r0(t, χ), it can be shown that ρ(m2, χ) = r̄(m2, χ),
where ρ(m2, χ) refers to the optimal functional form that we want to obtain when t is evaluated
at t =m2.

• Previous bullet point implies that optimal functional form of ρ(t, χ) with t evaluated at the
moment restriction t =m2 is essentially given by the least concave majorant of r0(t, χ), r̄(t, χ).
A natural question then will be what is the exactly the functional form of r̄(t, χ). By the
definition of least concave majorant, a straightforward motivating construction will be using
linear combination as the approximation. It can be proved that r̄(t, χ) takes the following
functional form akin to (†)

r̄(t, χ) = sup
u≥t

{(1 − t/u)r0(0, χ) +
t

u
r0(u,χ)} , (83)

6 Latent Factors

Dimension reduction is not only the major concern in machine learning literature but also other
fields like Finance and Statistics. Factor structure as the major dimension reduction tools have
been widely discussed in literature, both from theoretical and empirical perspective. Recently there
are some meaningful discussions (see Lettu and Pelger, 2020a,b) about extending the conventional
methodologies of principal component analysis (PCA) to a relatively more general framework by
constructing the objective function accounting for the factor approximation error simultaneously
from the time-series and cross-section dimension.

Basically, we observe excess return of N assets over T periods and factor structure is imposed
as following

Xt,n = F
⊺
t Λn + et,n n = 1, . . . ,N t = 1, . . . , T (84)

where if there are K factors, then both Ft and Λn are a K × 1 vectors. In matrix notation this reads
as

X
´¸¶
T×N

= F
´¸¶
T×K

Λ⊺

´¸¶
K×N

+ e
´¸¶
T×N

(85)

In practice, data is usually demeaned firstly and then applied with PCA. Moreover since Factor struc-
ture is imposed for summarizing the time-series variation shared commonly by cross-sectional data,
the demeaned process is taken over time-series dimension. For description simplicity, introducing
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the following notation first,

projection matrix demeaning time-series : M1 = IT −
1
T ιι

⊺

projection matrix : MΛ = IN −Λ (Λ⊺Λ)
−1

Λ⊺

where ι is a T ×1 vector of 1’s. With this notation introduced, the demeaned data (across time-series
dimension) is readily represented in matrix notation as

X̃ = M1X

F̃ = M1F

The key step in implementing PCA with respect to X̃ is calculating the sample second moment of
X̃:

1

T
X̃⊺X̃ =

1

T
X⊺M1X =

1

T
X⊺X −X X

⊺

Denote Λ̂, F̂ as the estimated factor loadings and factors respectively, the following equivalence can
be proved

Proposition 6.1 The k-th column of Λ̂ is proportional to the k-th eigenvector extracted from

1

T
X̃⊺X̃ =

1

T
X⊺X −X X

⊺

where X as the N × 1 vector denotes the time-series sample mean of cross-sectional excess returns,
that is

X =
1

T
X⊺ι

and Λ̂, ˆ̃F jointly solves the following minimization problem

min
Λ,F̃

1

NT

N

∑
n=1

T

∑
t=1

(X̃t,n − F̃
⊺
t Λn)

2
= min

Λ

1

NT
trace [(X̃MΛ)

⊺
X̃MΛ] (86)

and
F̃ = X̃Λ (Λ⊺Λ)

−1

Proof. Justification for F̃ = X̃Λ (Λ⊺Λ)
−1 is simply based on the observation that we are able to

commute the summation order of the objective function in a way such that the first summation
is taken over n with t fixed and then the second summation is taken over t. First order condition
for the summation over n with t fixed is the simply the OLS-style first order condition. Then
substituting a given F̃ of this form back yields the error term formulated as

X̃ − F̃Λ⊺
= X̃ − X̃Λ (Λ⊺Λ)

−1
Λ⊺

= X̃MΛ. (87)
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It is obvious that the objective function of this minimization problem could be represented as

1

NT
trace [(X̃MΛ)

⊺
X̃MΛ]

=
1

NT
trace [MΛX̃⊺X̃MΛ]

=
1

NT
trace [X̃⊺X̃MΛ]

=
1

NT
trace [X̃⊺X̃] −

1

NT
trace [X̃⊺X̃Λ (Λ⊺Λ)

−1
Λ⊺

]

Following discussion is useful for the final proof.

1. X̃⊺X̃ is symmetric real matrix and hence theoretically this is supposed to be represented as

QUQ⊺, U = diag (u1, . . . , uN) , u1 ⩾, . . . ,⩾ uN ⩾ 0, Q⊺Q = QQ⊺
= IN

2. Λ (Λ⊺Λ)
−1

Λ⊺ is an idempotent matrix, which implies it is supposed to be able to be represented
as

PVP⊺, V is a diagonal matrix with diagonal entries either 1 or 0, P⊺P = PP⊺
= IN

These two points jointly imply that

min
Λ

1

NT
trace [(X̃MΛ)

⊺
X̃MΛ] ⇔ max

Λ

1

NT
trace [QUQ⊺PVP⊺]

=
1

NT
trace [UQ⊺PVP⊺Q]

Hence the upper bound for 1
NT trace [UQ⊺PVP⊺Q] is the summation of the largest K eigenvalues

u1, . . . , uK of X̃⊺X̃, 9 which is necessarily guaranteed by setting the firstK columns of Q proportional
to Λ. ◻

However, arbitrage-theory predicts that factors should approximately price the cross-section of
expected excess returns well, which also implies that the excess returns should directly enter into
the objective function rather than the demeaned counterpart substituted in objective function as
in the standard PCA procedure. Hence the following minimization problem should be considered

9 A key fact for justifying this claim is Q⊺Q =QQ⊺
= IN and P⊺P = PP⊺

= IK .
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instead. 10

min
Λ,F

1

N

N

∑
n=1

(
1

T
X⊺
nι −Λ⊺

n

1

T
F⊺ι)

2

= min
Λ

1

N
trace [(

1

T
ι⊺XMΛ)(

1

T
ι⊺XMΛ)

⊺

] (88)

However, this objective function (88) does not identify a set of factors and loadings and the problem
admits an infinite number of solutions. In fact, any Λ such that X⊺ι belongs to the space spanned
by the columns of Λ will be a solution. A natural step following for extension is by considering the
combination of tow objective functions in the following way, which has been proposed in Lettu and
Pelger (2020a)

min
Λ

{
1

NT
trace [(X̃MΛ)

⊺
X̃MΛ] + (1 + γ)

1

N
trace [(

1

T
ι⊺XMΛ)(

1

T
ι⊺XMΛ)

⊺

]} (89)

= min
Λ

{
1

NT
trace [(MΛX⊺M1)M1XMΛ] + (1 + γ)

1

N
trace [(

1

T
ι⊺XMΛ)(

1

T
ι⊺XMΛ)

⊺

]}

= min
Λ

{
1

NT
trace [MΛX⊺

(IT −
1

T
ιι⊺)XMΛ] + (1 + γ)

1

N
trace [(

1

T
MΛX⊺ι)(

1

T
ι⊺XMΛ)]}

= min
Λ

{
1

NT
trace [MΛX⊺

(IT −
1

T
ιι⊺)XMΛ] + (1 + γ)

1

NT
trace [MΛX⊺ 1

T
ιι⊺XMΛ]}

= min
Λ

1

NT
trace [MΛX⊺

(IT +
γ

T
ιι⊺)XMΛ] (90)

The implication from (90) is that the objective function is minimized by choosing Λ as the eigenvectors
of the largest K eigenvalues of X⊺ (IT +

γ
T ιι

⊺)X.

Remark 6.1 To see how this modified PCA is connected with conventional PCA, we make the
following discussion for comparison

Conventional PCA Modified PCA

Objective function minΛ
1
NT trace [MΛX̃⊺X̃MΛ] minΛ

1
NT trace [MΛX⊺ (IT +

γ
T ιι

⊺)XMΛ]

From this comparison we are able to see that both the modified PCA and conventional PCA share
a similar functional form of objective function and once γ = −1, the objective function of modified
PCA reduces to objective function of conventional PCA. Moreover, it is obvious that the application
of PCA to X⊺ (IT +

γ
T ιι

⊺)X is equivalent to the application of PCA to 1
T X⊺X + γXX

⊺, where
X = 1

T X⊺ι.

10Actually (88) corresponds to a two-step optimization: for a fixed Λ, F is chosen following the OLS-style first order
condition, which implies that 1

T
F⊺ι = (Λ⊺Λ)

−1
Λ⊺
(

1
T

X⊺ι), then substituting back F of this form yields the R.H.S. of
(88).
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7 Empirical Application

7.1 Data

Nowadays there are several benchmark datasets corresponding to the firm-level characteristics and
returns collected at monthly-frequency, including the work done by Green et al. (2017), Gu et al.
(2019), Kozak et al. (2020) and Chen and Zimmermann (2020a) (cited as CZ20). Among which
CZ20 is in particular by far the most recent and comprehensive one that has successfully covered
almost all the major documented anomalies in literature. 11

The major reason why these firm-level characteristics are important is that essentially the
discrepancy of stock returns at cross-sectional dimension is attributed to these documented char-
acteristics and actually the expected return is a function of specific form of these characteristics.
Conceptionally it is possible for us to regard each characteristic as one measure to distinguish
different firms, and for dimension-reduction concern a specific factor structure summarizing the
major source of cross-sectional variation is impose in literature. factor model or the factor-structure
imposed in research is not simply confined to the discussion of stock market but applies broadly in
other financial market like mutual funds (Warther, 1995; Barber, Huang, and Odean, 2016; Edelen
and Warner, 2001; Berk and Green, 2004; Bergstresser and Poterba, 2004; Del Guercio and Tkac,
2002; Frazzini and Lamont, 2008; Ben-Rephael, Kandel, and Wohl, 2011; Ferson and Kim, 2012;
Kogan and Papanikolau, 2013; Dou, Kogan, and Wu, 2020; Lou, 2012).

For decades after the factor framework proposed by Fama and French (1993) in finance literature,
which is broadly acknowledged as the initial attempt to complement CAPM, there has a vast
majority of researches with focus on searching new anomalies that lead to abnormal returns that
cannot be explained benchmark model. However there is still ongoing debate about how the
results claimed in academic research generate impact on the associated anomalies-based investment
strategies and despite such a kind of research framework is overwhelming in empirical asset pricing
literature, recently it has received widely known criticism either for the underlying methodologies or
the credibility of the widely documented empirical results. The initially forwarded question about
this issue is what emphasized in Cochrane (2017) that the presence of a vast collection of noisy and
highly correlated predictors motivates the adoption of new methodologies instead of the conventional
cross-sectional regressions and portfolio sorts. However, the prevalent methodology implemented
in finance literature to uncover intervention (publication) effect is based on the direct comparison
between the average returns of anomaly-based portfolios before and after publication, rarely is there
literature discussing the counterfactual effect, i.e. the return if the anomaly had not been published.
By contrast, counterfactual effect is of broad interest in Microeconometrics researches and it is
intrinsically deserve more attention and recently there is an evolution accommodating this idea in
finance literature like the work done in Pelger and Xiong (2020)

11We acknowledge the codes and data kindly shared by the authors and their efforts on constantly maintaining and
updating the data. Both the codes and data are available at the authors’ maintained website https://sites.google.
com/site/chenandrewy/open-source-ap?authuser=0.
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For the dataset constructed in CZ20, there are in total 210 portfolios based on different anomalies
(characteristics). Specifically, each anomaly is based on a firm-specific variable (characteristic), e.g.
the size and book-to-market ratio and then all the stocks traded on U.S. market are sorted into five
quintile portfolios based on the corresponding firm-specific characteristic. Return associated with
anomaly is Long-short portfolios that buy the highest quintile and sell the lowest quintile portfolio.

One of their claimed result for the simple case when there is only a single factor is as following

√
T (λ̃i − λi)

d
Ð→

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (0,
T

T0

σ2e
σ2F

+ 2
T − T0
T0

) for i = 1, . . . ,N0

N (0,
σ2e
σ2F

) for i = N0 + 1, . . . ,N

One of the main objective for Pelger and Xiong (2020) is to uncover the difference between common
component of units after treatment adoption Ctreat

it and the common component of the synthetic
control Cctrl

it , that is
τit = C

treat
it −Cctrl

it (91)

Generally there are three kinds of patterns associated with data structure with missing values:
(i) random missing pattern where whether the entry of data is observed or not does not depend
on the entries or other observable covariates; (ii) All the data for treated panel are not observed
simultaneously after a specific period; (iii) The periods after which the data for units collected
in treated panel are not observed is staggered. This categorization is demonstrated visually as
following

[Place Figure 5 about here]

For the inspiring insights on the practical empirical application, Let us first visualize the cumu-
lative return associated with these long-short portfolios based sorting on anomalies (characteristics)

[Place Figure 6 about here]

This may not be that obvious, another direct measure would be calculating and comparing the
average returns of different anomaly-based portfolios before and after the publication of specific
anomaly.

[Place Figure 7 about here]
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Figure 1. (a) demonstrates all the potential outcomes from intervention for T = 3. (b) demonstrates the observed
outcome path (possibly not affected by intervention at some period) Y1∶3(w1∶3), indicated by the thick red line.
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Table 1. Summary of basic concepts associated variational bayes method

Name Definition

Variational log likelihood Mn(θ;x) ∶= supq(z)∈Qn F (q,θ) = supq(z)∈Qn ∫ q(z) ln (
p(x,z∣θ)
q(z) )dz

Variational frequentist
estimate (VFE)

argmaxθMn (θ,x)

VB ideal π∗ (θ ∣ x) = p(θ)Mn(θ;x)
∫ p(θ)Mn(θ;x)dθ

Evidence Lower Bound
(ELBO)

ELBO (q(θ,z)) ∶= ∬ q(θ)q(z) ln p(x,z,θ)
q(θ)q(z)dθdz

VB posterior q∗(θ) ∶= arg maxq(θ)∈Qd supq(z)∈Qn ELBO (q(θ,z))

VB estimate (VBE) θ̂∗n = ∫ θ ⋅ q
∗(θ)dθ

Note: (i) Mn(θ; x) is introduced with subscript n to emphasize the dependency on sample size. (ii) Qn is introduced

with superscript n to emphasize that the optimization is implemented over the family of distributions of local latent

variables and all the alternatives contained in the family of these distributions are factorizable.
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Figure 2. In this figure we demonstrate how the posterior probabilities assigned to the first 20 covariates evolve
over time. The length of time-series observations is T = 200 and the total number of covariates is p = 200.
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Figure 3. In this figure, we demonstrate how coefficients are estimated (medians over 100 Monte Carlo iterations)
over time and the corresponding true values used for generating data as well. Cyan solid lines refer to coefficients
fitted from the variational bayes algorithm and black long-dashed lines refer to true values used to generate data. The
sub-figure contained in each panel represents how the related values evolve over time. And grey areas refer to the 84%

and 16% quantiles (over 100 Monte Carlo iterations) respectively. The length of time-series observations is T = 200
and the total number of covariates is p = 200.
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Figure 4. In this figure we demonstrate how the posterior probabilities assigned to the first 20 covariates evolve
over time. The length of time-series observations is T = 200 and the total number of covariates is p = 200.
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Figure 5. This is figure is for demonstrating visually the ideas of three data missing patterns mentioned in the
context. Each panel refers to a specific missing pattern, i.e., (a), (b) and (c) refers to random missing pattern,
simultaneously missing pattern and staggered missing pattern respectively. To make it as a comparable discussion in
panel causal inference setting, horizontal axis refers to the time while the vertical axis refers to the units. Blue shaded
entries indicate the missing observations.
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Figure 6
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Figure 7
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Note: In each panel of the above figure, average returns of different anomaly-based long-short portfolios are

demonstrated separately. Specifically, the red bar plot indicates the the average return of a specific anomaly-based

long-short portfolio before that anomaly was published while the blue bar indicates the average return of long-short

portfolio constructed from that anomaly after publication.
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