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Abstract

Building on the fixed-k inference framework developed by Bollerslev, Li, and Liao
(2021), this paper introduces a class of alternative models for spot volatility in high-
frequency, all of which fall within a nonlinear and non-Gaussian state-space frame-
work. We propose Bayesian and particle filter methods for parameter estimation,
latent spot volatility extraction, and model comparison. Simulation studies demon-
strate the effectiveness of our approach, while empirical applications suggest new
directions for spot volatility modeling.
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1. Introduction

Financial market volatility, as a key measure of risk, plays a vital role in both financial
theory and practical applications of asset pricing (Engle, 2004). Early literature recognized
the time-varying nature of daily volatility and focused on parametric volatility modeling
using daily returns. Seminal contributions include the ARCH model by Engle (1982), the
GARCH model by Bollerslev (1986), and the stochastic volatility model by Taylor (1982).
These models provide daily volatility estimates as a byproduct of parameter estimation.

More recent literature employs daily realized volatility (RV), a nonparametric estimator
of daily integrated volatility (IV), which is constructed from intraday returns, typically at
5-minute intervals. By leveraging high-frequency data, RV delivers more accurate volatility
estimates than daily returns. This has spurred extensive research on modeling and forecast-
ing RV, as seen in Andersen et al. (2001a), Andersen et al. (2001b), Andersen et al. (2003),
Gatheral, Jaisson, and Rosenbaum (2018), and Wang, Xiao, and Yu (2023), among oth-
ers. Beyond volatility estimation, RV has broad applications, such as constructing GMM
estimators for diffusion models (Bollerslev and Zhou, 2002).

While parametric models for daily volatility are ill-suited for high-frequency spot volatil-
ity, which exhibits more complex dynamics. Developing accurate high-frequency volatility
models is crucial for understanding intraday and interday volatility behavior, with implica-
tions for asset pricing, forecasting, trading, and risk management. For instance, portfolio
managers increasingly require intraday rebalancing, necessitating sub-daily volatility and
covariance forecasts.

Stroud and Johannes (2014) pioneered high-frequency volatility modeling by proposing
a multiplicative specification for returns, incorporating autoregressive stochastic volatility,
diurnal patterns, and announcement effects. Their Bayesian estimation using 5-minute
S&P 500 futures data confirmed the significance of all three components. This work laid

the foundation for further advances, particularly with ultra-high-frequency (UHF) data.



For example, Bekierman and Gribisch (2021) and Watanabe and Nakajima (2024) adopt
the same multiplicative specification but introduce alternative dynamic models for high-
frequency volatility. However, while RV improves daily volatility estimation, constructing
high-frequency models from 5-minute returns may be less effective than using 5-minute spot
volatility estimates derived from UHF data. This paper aims to develop high-frequency
volatility models using such estimates.

Recent years have seen significant progress in spot volatility estimation. Foster and
Nelson (1996) introduced nonparametric estimators for diffusion models, while Kristensen
(2010) proposed a kernel-weighted IV estimator with vanishing bandwidth. Zu and Peter
Boswijk (2014) advanced the field with an estimator building on Zhang, Mykland, and
Aft-Sahalia (2005) and Mykland and Zhang (2008), establishing asymptotic theory under
the assumption of an increasing block size k. Departing from this, Bollerslev, Li, and Liao
(2021) developed a fixed-k inference framework, where estimation error follows a scaled
chi-squared distribution.

Building on Bollerslev, Li, and Liao (2021), we propose a class of high-frequency spot
volatility models within a nonlinear, non-Gaussian state-space framework. The observation
equation links the fixed-k spot volatility estimator to the true latent volatility, ensuring
theoretical rigor.

We develop a Bayesian estimation approach via Markov Chain Monte Carlo (MCMC),
enabling parameter estimation, latent volatility extraction, and model comparison. The
posterior mean of the latent volatility serves as a smoothed estimate. For model selection,
we design a particle filter to approximate the marginal likelihood, facilitating comparisons
via information criteria. Additionally, this filter facilitates one-step-ahead volatility fore-
casting.

The paper proceeds as follows: Section 2 reviews the fixed-k framework and presents

our proposed models. Section 3 details the Bayesian methodology, while Section 4 and



Section 5 cover simulations and empirical applications. Section 6 concludes. Technical
details are deferred to the Appendix. Throughout the paper, for two random sequences a,,

and b, we write a,, < by, if a,,/C < b, < Ca, for some finite constant C' > 1.

2. Model Setup

2.1. Individual asset price process and spot volatility

Before we introduce our high-frequency volatility models, we first clarify some relevant
mathematical notations and related concepts. All random variables are defined on a fixed

(complete) probability space (2, F,P) with filtration (F;) Following Andersen et al.

t>0"
(2001b), we adopt the assumption that logarithmic asset prices follow a univariate diffusion.

In particular, for the a specific individual asset, the logarithmic return is modeled as

t t
Pt —DPt—1 =Tt = / MSdS +/ Jdesa (1)
t—1 t—1

where Wy stands for the standard Wiener process and hence, the corresponding volatility

measure is based on the quadratic variation process, denoted by Qvar,, which yields

Quat, = [p.pl = poples = | ol ®)

This is commonly referred to as the integrated volatility in the literature. It is broadly
known in literature (as in Andersen et al., 2001b; Barndorff-Nielsen and Shephard, 2002)
that the integrated volatility over non-trivial time interval, such as a day, is an important
quantity of interest in finance. Many nonparametric estimators for daily IV have been
proposed ever since then, and among them the most widely used estimator is the daily RV
based on 5-minute returns.

With the increasing availability of data sampled at ultra high frequencies, how to es-
timate and forecast the spot volatility, that is o7, has drawn a growing interest in the

literature. Based on the mathematical foundation in extant literature, we focus on the
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following model for (log) price process as in the literature,

t t
Xt:X0+/ bsds+/ osdW, + Jj. (3)
0 0

This is a continuous-time It6 semimartingale process with drift (b), diffusion (o) and jump

J;). Making inference of the time-varying o? serves as one major target of the present
g yug oy J g

paper.

2.2. Fixed-k inference for volatility

When the logarithmic price of an asset follows model (3), Jacod, Li, and Liao (2021)
suggest a way to estimate “spot covariance” in the general multivariate setting, ¢; = oy0,

nonparametrically and uniformly as follows

=i Z AIXATX L x) o} e
where
VAV T/n
ATX o Xia, — XA,
u, :  truncation threshold satisfying u, < A%, w € (0,1/2).
Z,,; set collecting indices of consecutive increments in j-th block,
such that {1,...,n} =" Z,; and |, ;| = kn ;.
Tnj +  Correspondingly, [0, 7] can be dissected as [0,T] = ;2 Tn;
t(n,j) = (minZ,; — 1) A,
and

[t(n,j),t(n,j+1)) if1<j<m,

Tn.j
[t(n,my), T] if j=my.

Specifically, T' can be interpreted as the total length of time or the number trading days
so that A, = T'/n usually refers to the sampling interval and £k, ; denotes the block size.

While it is commonly assumed that &, ; — oo in the literature, Bollerslev, Li, and Liao



(2021) advocate a way of making inference for spot volatility with k, ; = k fixed. To see
the link between the setting of Bollerslev, Li, and Liao (2021, henceforth BLL2021QE) and

the model to be established in our paper, note that BLL2021QE set

In,j = {(]_1)k+177]k}7

7:1,,]' = [(] - ]-)kAnujkAn)7

which is a special case with £, ; = k. Making the inference of spot volatility in a nonpara-
metrically refers to the fixed-k inference for volatility. In the univariate case, ¢; = o? is
estimated by ¢, ; with the j-th local block size fixed such that k, ; = &, that is,

R R 1 2

Cnit = Cnj = E Z (A7X) 1{|A?X|§un}7 (5)

€T,
fort e T,; and j € {1,...,m,}.

According to Theorem 9.3.2 of Jacod and Protter (2012), k,,; — oo and k,;A, — 0
are needed to ensure the consistency of ¢, ;. The required conditions for the consistency
is intuitive as they require the local estimation block contain an increasing number of
observations (i.e. k,; — 00), while at the same time the size of local estimation block
shrinks to zero asymptotically (i.e. k,;A,, — 0). However, the required conditions for
ensuring the desired consistency of nonparametric spot volatility estimation (i.e., ¢,,) are
stringent and can hardly be met simultaneously in practice. Set against this background,
the fixed-k inference with local block size fixed can alleviate this issue by focusing on a
single asymptotic scheme that only requires A,, — 0, which is easy to be achieved in the
high-frequency setting.

By setting the estimation block size k fixed, the resulting spot volatility estimator of
is not consistent, but easy-to-calculate pointwise confidence intervals are available at any
given point in time given the distribution that characterizes the ratio of the nonparametric
estimator ¢, to the true unobserved volatility process ¢;. The main distribution theory

associated with the fixed-k inference for spot volatility is established in BLL2021QE, which
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is summarized as follows for discussion.

Theorem 1 (Bollerslev, Li, and Liao (2021)). Suppose that ASSUMPTION 1 imposed
in BLL2021QFE holds. Then for any finite subset M C {1,...,m,}, there exists a collection

such that for any j € M andt € T, ;,

of independent random variables (Sj)jefvl

6”7 Q —r)w
ot 5, = 0, (AFT=2) = ,(1), (6)

Cy

where

2

Sj = (kAn>_1 Z (WiAn - W(i—l)An)

€T ;

is a X:-distributed random variable with X3 referring to the scaled chi-squared distribution
such that

Xz = Zi/k, with Z), ~ X3. (7)

In companion with this definition, we have the scaled inverse-chi-squared distribution

This distribution theory suggests that the distribution corresponding to the induced
noise can be characterized properly. There is an textbook treatment of the log chi-squared
distribution (see Lee, 2012), Inx3%, associated with In Z;, by taking logs on both sides of
Zi ~ X3 in (8) such that In Zj, has following probability density function in analytical form

(in logarithmic form),
k 1 1
Inf(z) = —§1n2 —InT (k/2) + ikz — 5 exXp (2).

We will show how to use the derived distribution theory to establish nonlinear non-Gaussian
state-space models for spot volatility. Before we proceed to the corresponding discussion,
we first demonstrate why we establish a non-Gaussian state-space models by showing that
the distribution of ¢, ;/¢; is different from Gaussian distribution when the estimation block

size k is small. For Z;, we have E (Z) = k and Var (Z;) = 2k, where E(+) and Var(-) denote
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the mean and variance operator respectively. Then for the scaled chi-squared distribution
X&, we have E (x7) = :E(Zx) = 1, and Var (y3) = 5 Var (Z;,) = 2. We plot the density
of X against the density of a normal distribution with mean E (y2) = 1 and variance
Var (Yi) = %, for k = 5,10, 30, 60, respectively, in Figure 1. The choice of £ = 5 and k = 10
may correspond to the empirical scenario when the price data is sampled at 1-minute
frequency while the researchers focus on the estimation of 5-minutes spot volatility and
10-minutes spot volatility. By contrast, the choice of k£ = 30 and k£ = 60 may correspond to
the empirical scenario when the tick-by-tick returns are used while the researches focus on
half-a-minute (30 seconds) spot volatility and 1-minute (60 seconds) spot volatility. The
choice of £k = 5 and k = 10 with 1-minute returns is more realistic, but the distribution
of fixed-k spot volatility estimator deviates significantly from normal distribution with the

same mean and variance. This fact motivates the establishment of nonlinear non-Gaussian

state-space models.

Remark 1. [t is important to note that the nonparametric estimator as in (5) requires a
selected sequence of truncation threshold wu,, which is usually selected via thumb rule, as
suggested by BLL2021QFE, based on the bipower variation estimator in Barndorff-Nielsen
and Shephard (2004). Instead, one alternative for filtering price jumps in the fized-k infer-
ence setting is considering a leave-one-out spot variance estimator for each local estimation
window with k returns. To illustrate the key idea, we write the leave-one-out spot variance

estimator as

~ leave-one __

: = A X)? 9
n,j (k_1>Anz ( 2 )’ ()
where I . = {i* € T, : |ALX| < maxer, [ |AX|} and |I; ;| = (k — 1), given our as-
sumption that within each local estimation block there exists at most one price-level jump.

This assumption is reasonable in that for a fized k, the length of the local estimation block,

kA, — 0 when A, — 0. By construction, it is not hard to derive the distribution of
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Figure 1: In each panel, we show the density of Y7 (blue solid line) and the density of a
normal distribution with the same mean and variance (red dashed line) for various values

of the local estimation window size k.

énlf;a"e'one from “volatility coupling” theory,
~ leave-one k—1 k
Cp 1 o1 e
" ~ k—1;<<z> = 1 ;CZ Cwy |
where Ci,...,¢ are ii.d. X7 variables and (qy < (o) < --+ < () are the correspond-

ing order statistics. We refer such a kind of construction of spot wvolatility estimate to
the jump-robust spot wvolatility estimate. The corresponding approximation distribution
ﬁ ((Zle CZ> — C(k)> does not have closed-form probability density function, but it is

easy to simulate samples from ﬁ ((Zle Q) — C(k)>.

Within the fixed-k volatility inference modeling framework, the distribution usually
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does not have a closed form or may have analytical forms with complicated expressions;
however, one can easily obtain simulated samples of reasonably large size. Based on the
simulated samples, we can approximate the probability density function using Gaussian
Mixture Models (GMM). This GMM approximation method can also be applied in other
fixed-k inference setting (e.g., the “Optimal CandlesticK” estimate in Li, Wang, and Zhang
(2022), and more recently in Bollerslev et al. (2024a) and Bollerslev et al. (2024b), among
others) to approximate the “gap” distribution that characterizes the ratio of nonparametric
estimate of spot volatility and the true unobserved volatility process.

To sum up, the theoretical foundation for the fixed-k inference theory lies in the “volatil-
ity coupling” theory in Jacod, Li, and Liao (2021), from which many distributions of dif-
ferent variants can be derived, including the just mentioned “jump-robust” version, the
“Optimal CandlesticK” version, and the most recent one in Bollerslev, Li, and Ren (2024),
among others. These distributions may or may not have closed-form characterizations
and we generally advocate GMM approximation of the simulated samples as the proxy

distribution in our spot volatility model.

2.3. State-space models for spot volatility

Although unobserved spot volatility is indexed continuously in our model, to facilitate non-
parametric estimation of spot volatility, following (5), we assume there exists a surjective
function that maps t € [0,7] to j € {1,...,m,}. As implied by the fixed-k inference
theory, instead of estimating In(c¢,) for ¢ € 7y, ;, In(¢;) is approximated by a local constant
In(c, ;) for the j-th block with j € {1,...,m,}. In the state-space framework, therefore,
we model blocks dynamics. To ensure our notations to be consistent with those in the
literature (such as Chernov et al., 2003), we split each day into M disjoint blocks and the
size of each block is fixed as k. If T represents the total number of trading days, then

n = k(MT) and A, = T/n = 1/(kM). In this case, the total number of blocks for the
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T trading days is m,, = MT. For instance, if the price data is sampled minute by minute
within one day, and in each day trading hours start from 09:30 to 16:00. Besides, every 5
minutes are treated as a local estimation block for this case. Then by specification we have
T=1,A,=1/(65x60)=1/390, k =5, and M = 78.

Based on the fixed-k inference theory, we set up the following class of state-space models

In (é,;) = In(cny) +€5, € ~Inyx; or GMM approximation, (10)

In(c,;) = alternative models. (11)

Clearly, the observation equation comes from the fixed-%k theory.

Since €; is not a Gaussian variable, all models in this class belong to the class of a
nonlinear non-Gausian state-space models.!

In all alternative models, we assume that the log of the latent volatility process can be
decomposed as

In (Ct) :u+ht+st, (12)

where h; is a stochastic volatility process, s; the intraday seasonal component. Correspond-

ingly, for each block, we have the following decomposition
h’l(Cn’j) :,M—th‘i‘sj, Sj :5(7”), j = 17"'7mn7 (13>

where r = (mod (j — 1, M)+1)/M and mod(x, y) refers to the modulo operation that takes
the remainder of any x € Z divided by y € Z.

To capture the diurnal pattern, we assume 5(r) is a quadratic function. In particular,
it is assumed that §(r) = 12(1 —b) (r — 1)2 + b as this is the only function within the class

2

f(r) = c(r—a)*+0b that satisfies (i) fol (c(r —a)* +b)dr = 1; (ii) argmin, c(r —a)®*+b = 1.

!As we have mentioned earlier, the distribution of €; does not necessarily have a closed-form char-
acterization. GMM approximation ensures that the conditional likelihood can be calculated using the
corresponding particle filter, allowing us to cast the established spot volatility model into a Gaussian

state-space model so that the Kalman filter can be applied, which we will discuss later.
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The first condition is imposed for identification. The second condition assumes that the
diurnal pattern reaches the minimum in the middle of a trading day, an empirical regularity
that has been found in the literature.? There is a restriction in using the quadratic function.
That is, it implies a symmetric diurnal pattern. In a recent study, Christensen, Hounyo,
and Podolskij (2018) propose a nonparametric method to estimate the diurnal patten and
find an asymmetric diurnal pattern. However, our approach can be easily extended to cover
more complicated deterministic functions for diurnal pattern. Besides, we want to point
out that given the function form of 5(r), b serves as the key parameter determining the
intraday diurnal pattern.?

We impose AR(1) dynamic with a jumps structure on the volatility process. Specifically,

we assume that the transition dynamics from the j-th block to the (j + 1)-th block follows
hj+1 = ¢hj + 6]' -+ Jjﬁj, ej ~ N (0, O'g) s T]j ~ N (,U/n, 0'73) s (14)

where J; is a jump indicator following Bernoulli distribution Bern(k), defined by

1 with probability K
Jj =
0 with probability 1 — &,

with k£ being the jump probability and 7; determining the jump size. Given the specified
volatility process dynamics, we briefly discuss here why we advocate GMM to approximate
the distribution of ¢;. In fact, using GMM to approximate a non-Gaussian random variable

is a technique broadly adopted in literature; see, for example, Kim, Shephard, and Chib

2To satisfy the condition that argmin, c¢(r — a)? +b = %, we have ¢ > 0 and a = % Substituting a = %
into fol (c(r —a)? +b) dr = 1 yields &5c+b =1 and ¢ = 12(1—b). Thus, the quadratic function is uniquely
determined by b. The larger the value of b is approaching 1, the less pronounced becomes the quadratic

volatility pattern.

3The model can be extended to incorporate announcement effects, for which an MCMC algorithm can

be designed to conduct posterior analysis.
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(1998); Omori et al. (2007). The main advantage of using GMM is that one can cast the
non-Gaussian state-space model into a standard linear Gaussian state-space model so that
the Kalman filter along with the standard simulation smoother can be applied for extracting
the latent stochastic spot volatility. Given the specification in (10) and (14), it is easy to
note that both ¢; and e; + J;n; follow a mixture normal distribution. We introduce an
auxiliary latent state variable S; € {1,..., K} to indicate the mixture component of ¢;

that is approximated through GMM.

K
Fle) = aufn (6| M, v2), (15)

where fy (€; | My, v2) denotes the w-th Gaussian component with mean equal to m,, and
variance equal to v2, assigned with probability q,. {qu., M., v2} are determined by the EM
algorithm. We demonstrate the GMM structure for Inx2 and In x%, using Table 1 and
Figure 1. We approximate In xZ using a GMM with 7 components and In x%, using 10
components. The detailed structure of the components is summarized in Table 1. Figure

1 shows that both approximations are accurate.

2.4. Alternative model specifications

In this section, we introduce the following alternative model specifications corresponding

to (13) and (14).
e Model 1
In(cn;) = p+hy,
hjs1 = ohj+ej, e ~N(0,07).
e Model 2
In(cn;) = p+hy,
hiyi = ohj+e;+Jm;, e, ~N(0,02), nj~N (uy,07) .
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Table 1: GMM structure

w k=5 k=10
Qw My V2 Qw My v2

1 0.1231 0.9874 0.4817 0.0696 1.9946 0.2476
2 0.1943 1.5760 0.2741 0.0973 2.2823 0.1570
3 0.1417 1.1123 0.4403 0.0842 2.1102 0.2131
4 0.1839 1.7175 0.2223 0.0941 2.2082 0.1816
5 0.0469 0.2557 0.7775 0.0927 2.3577 0.1318
6 0.1696 1.3002 0.3742 0.0277 1.5782 0.3603
7 0.1407 1.8683 0.1677 0.0903 2.1651 0.1957
8 0.0799 2.4201 0.1117
9 0.0950 2.3374 0.1385
10 0.0506 1.8391 0.2891
11 0.0969 2.2597 0.1645
12 0.0614 2.4732 0.0954
13 0.0604 1.9219 0.2676

e Model 3
In(c,;) = p+h;+sj,
hivi = ohj+e;+ I, e;~N(0,62), nj~N (g, 07),

s;=8(r) = 12(1—-10) (r—%) +b, r=(mod(j—1,M)+1)/M.

We focus on these model specifications for the following reasons. First, Model 1 is
a straightforward extension of the conventional SV autoregressive process to model the
“block” dynamics in a high-frequency setting. The terminology “block” refers to each
fixed-k local estimation block for spot volatility. Second, Watanabe and Nakajima (2024)
adopted a similar multiplicative specification for the volatility process but did not model
the jump effects on the volatility process, as they found that jumps in the volatility process
have marginal impact on both in-sample fit and out-of-sample forecast gain. However,
the observation equation in the state-space model of this paper is different from that in

Watanabe and Nakajima (2024). We aim to model the jump effects potentially caused by
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Figure 2: In each panel we plot the density, we plot the density of Inx2 (blue solid line)

and the density of the corresponding Gaussian mixtures (red dashed line).

system shocks and, therefore, specify the jump components of the volatility process on top
of the basic specification of Model 1 to establish Model 2 for modeling the spot volatility
dynamics. Third, Model 3 incorporates the basic structures of both Model 1 and Model
2 by adding an additional layer of parameter specifications to model the intraday diurnal
pattern of spot volatility. In fact, the multiplicative specification of the latent volatility
process can be regarded as a superposition of different components. Therefore, the ap-
proach for modeling the intraday diurnal pattern can also be extended to other parametric
specifications with more complex parameter structures (for instance, modeling announce-
ment effects using a parameterized exponential distribution with proper decay properties),
with the corresponding parameters sampled using MCMC. We can complete this extension
when necessary. Although the basic multiplicative specifications for the volatility process
are adapted from Stroud and Johannes (2014), they did not provide simulation evidence
for model comparison performance based on different information criteria. Our simulation

studies fill this gap by providing a simulation evidence.
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It is obvious that Model 3 shares the same structure as in (13) and (14) by incorpo-
rating jumps on volatility and volatility diurnal pattern simultaneously. In comparison to
Model 3, Model 1 has the most parsimonious model structure whereas Model 2 keeps
the single-factor structure with Bernoulli type jumps specifications on volatility process.

To compare models across different specifications, we mainly use two methods: Deviance
Information Criterion (DIC, Spiegelhalter et al., 2002, 2014) and marginal-likelihoods. DIC
is a popular method for model selection when MCMC output is ready. DIC has a few nice
features. First, DIC applies to a wide range of statistical models. Second, it does not suffer
from Jeffreys-Lindley-Barlett’s paradox. Third, it can be obtained even under improper
priors. Finally, Li et al. (2025) justify DIC by showing that DIC is an asymptotically
unbiased estimator of the Kullback-Leibler divergence between the data generating process
and the plug-in predictive distribution. Besides, there have been studies of volatility using
relatively low frequency data demonstrating the performance of DIC (Berg, Meyer, and
Yu, 2004).

DIC is given as follows

DIC = D () + 2Pp, (16)
where

D(6) = —2np(y|8),

Py = =2 [Inply | 6) ~ gy | 8)(6 | y)d6.

0 is the posterior mean of parameter 6, and y denotes observable data (i.e., fixed-k non-
parametric estimate of spot volatility in this setting). One should note that DIC captures
trade-off between model fit and complexity, similar to other widely used information crite-
ria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).
When making model comparison using DIC, models with smaller DIC values are preferred.

Alternatively, we can calculate the harmonic mean of the log-likelihoods associated

with 8 from MCMC runs for each model and make model comparison based on that. This
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procedure is similar to the original idea in Newton and Raftery (1994) that uses harmonic
mean approximation (HMA) to calculate Bayes factor. The reason for using the Bayes
factor for model selection is that it is designed to favor the model that is associated with
the true data generating process (DGP), as opposed to DIC, which mainly targets model
fitting performance. To formally calculate the Bayes factor, one needs to calculate the
marginal likelihood, i.e. m(y), associated with each model. Given the fundamental Bayes

theorem, we have

oy | 0)n(6)
mY) =Ty

where 7 () denotes the prior structure imposed on each model. Taking logarithms on both

sides obtains the expression for the logarithm of marginal likelihood,

nm(y) = Inp(y | 6) +In7(0) —Inp(6 | y). (17)

Chib (1995) and Chib and Jeliazkov (2001) suggest calculating Inm(y) by evaluating the
right-hand side of (17) at an appropriate single point " that has high probability density
in the support of posterior. For the state-space model, one can calculate In p(y | 8") via the
auxiliary particle filter discussed in the appendix. By the law of total probability p(6™ | y)

can be decomposed as

(0" |y) =pO7 | y)p5 |y, 07) --p0, |y,07,...,0; 1),

where 6 = (64,...,6,,) with gy being the dimension of 8. Given the property of MCMC
run, the decomposition of p(6* | y) can be approximated via a sequence of reduced MCMC
run (Chib and Jeliazkov, 2001). Accordingly, one can use 6 to approximate 8* and calculate
Inp(y | ), Inw(6%), and Inp(@* | y) respectively to obtain Inm(y). Once Inm(y) is
established, we can compare models by comparing marginal likelihoods.

To compute DIC and marginal likelihoods, one needs to calculate the log-likelihood
In(y | 8). For our proposed spot volatility models, we design an auxiliary particle filter

to calculate the log-likelihood. Note that the computational burden arises from the need
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to calculate the log-likelihood for each MCMC posterior sample of 8. To overcome this
computational burden, we implement this part of the algorithm in a parallel scheme using
OpenMP. The details of the corresponding algorithm are summarized in Appendix B. In the

simulation study, we will examine and compare the performance of these two methods.

3. Bayesian and MCMC Analysis

With the state-space model summarized in (10) and (11), we design an MCMC algorithm
to estimate all the parameters involved (especially the log spot volatility that is latent).
MCMC, as the leading modern Bayesian technique, is suitable for analyzing state-space
models. Before we formally discuss the MCMC steps, we first fix notations and then briefly
discuss the priors we will use. We collect all parameters that specify the state-space model
into 0, that is, 8 = (gb,u,af, /ﬁ,un,ag,b). Let h denote the sequence of h;, S denote the
sequence of the auxiliary latent state variables S}, J denote all the jump indicators, and n
denote all the jump sizes. For simplicity, we let h=h+ T

To conduct the Bayesian analysis, we choose the following prior distributions. For
the persistence parameter ¢ and the parameter x that determines the jump probability,

we assume Beta prior distributions. For p and the parameter p, that denotes the jump

2

magnitudes, we assume normal prior distributions. The prior distributions of o

and o
are chosen to be inverse-gamma. Finally, for the parameter b that determines the in-
traday diurnal pattern of volatility, we impose the truncated normal distribution as the
prior distribution. To sum up, we have following prior distributions: % ~ B(ag, Bs),

/’L ~ N([L7&2)7 O’z ~ Ig (O{UEJ/BO'e)7 K~ B(alﬁl’/ﬁl{)? (//(/7]70’72]) ~ NIg ([Ln’ >\0n7a0'7]7/60'n)7

4Given this specification, the transition dynamics from the j-th block to the (j + 1)-th block can be

alternatively expressed as
hjr1 = ohy + (1= d)u+ej + Jimj,

which would be useful for the design of MCMC sampler; see Appendix A.1.
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b~ TN (fw, 72, o, By), where B denotes the beta distribution, A/ denotes the normal dis-
tribution, ZG denotes the inverse-gamma distribution, NZG denotes the normal-inverse-

gamma distribution, and 7N denotes the truncated normal distribution, and

o ~ o
O‘¢7B¢7,u70- 7a0eaﬁo'evoéliaﬂﬂ7lu’177)\Un7a0n7ﬁonalub7o-bvo‘bvﬁb

are all the corresponding hyperparameters. Given the prior specifications, the MCMC loop

is summarized as follows,
1. Initialize 0, S, J.
2. Sample h = {h;} | {In(¢,;)},0.S.J.
3. Sample S | {In(¢,,)},h,0,J.
4. Sample J | h, 0.
5. Sample n | h, 0, J.
6. Sample 0 | {In(¢,;)},h, S, J.
7. Go to 2.

Iterations over step 2-7 consists of a complete sweep of MCMC sampler. The detailed
description of the algorithm is presented in Appendix A. We implement the algorithm
using MATLAB and C++ with Eigen (http://eigen.tuxfamily.org).

With the extracted latent spot volatility and the corresponding parameters @ fixed at
the posterior mean of MCMC samples, we can further design an auxiliary particle filter to
forecast spot volatility. Since our analysis mainly builds in the high-frequency setting, we
focus on one-step-ahead forecasting. That is, we forecast ¢, ;11 based on the established
spot volatility model and data ¢,1.; := {¢n1,..., ¢}, which is the fixed-k nonparametric
spot volatility estimation updated till the j-th local estimation window. More specifically,

one can use the predictive distribution, p (¢, j11 | én15, @) from the auxiliary particle filter
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to construct the one-step ahead spot volatility forecasting (posterior mean or posterior

mode of the predictive distribution) and the posterior forecasting confidence intervals.

4. Simulation Studies

4.1. Parameter estimation and extracting volatility

We simulate data (i.e., the (log) price process) from three different data generating processes
(DGPs) with the (log) volatility process being modeled as either Model 1, or Model 2, or
Model 3. The fixed-k inference theory and “volatility coupling” theory guarantees that as
long as the specification of the (log) price process follows It6 semimartingale process with
drift, diffusion and jump, the corresponding distribution theory for the nonparametric
estimates of spot volatility applies when the local estimation block is fixed. Let us denote
the three different DGPs by DGP 1, DGP 2, and DGP 3, respectively, and summarize

them as follows.

e DGP 1
dXt = exp (;Lt/2> th,
iLt = luh + h‘ta
dhy = —rphydt + o (det 1 deBt) .
e DGP 2

dXt = exXp (iLt/2> th7
ht = Un + ht7

dhy = —rphidt + oy (Pth +V1- P2d3t> + Lg—ey Jene,
Jy ~ Bern(k),
e ~ N(“nvag)'
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e DGP 3

dX, = exp (Bt/2) AW,
hy = pp+ he + ¢,

dhy = —kphydt + oy (pdm + ﬂdBt) + Loy Jeie
Jy ~ Bern(k),
m o~ N (g, 07),

s = 12(1—b) (t—Lt—J—%)2+b.

In the description of DGPs above we introduce the notation ¢° such that ¢° € [0,7],
r®e{1/M,2/M,...,M/M =1}, and t° = [t—] +7r°. Meanwhile, [t—]| denotes the greatest
integer less than ¢ and 1y, refers to an indicator function. In the high-frequency setting, we
focus on the spot volatility within one day, that is, the intraday volatility in a trading day
of each month. Specifically, we assume that in each trading day there are 6.5 trading hours
from 09:30 to 16:00 and we consider one-minute returns. Therefore, there are 6.5 x 60 = 390

minutes and A, = 1/390 by construction. Besides, we specify ju;, = —6.2.°

Remark 2. Specifying E[W,B,] = p = 0 implies that in the state-space model that we
have established, our main target is to extract the underlying time-varying volatility process
and temporarily ignore the correlation between the Brownian motion that drives the (log)
price process and the Brownian motion that drives the spot volatility process. Although the
ignorance of correlation between error terms may lead to the misspecficiation of models, if
the goal is shifted towards forecasting while admaitting model being misspecified, the leverage

effect issue may be of secondary concern.

Remark 3 (From DGP Dynamic to Block Dynamic). We discuss the dynamics of

SV autoregressive process using Model 1. In Model 1, if k, > 0, h; is a stationary

Sup = —6.2 is prior mean specified as in Stroud and Johannes (2014) for the mean of the logarithm of

volatility process, specifically, the equation (2) and appendix A of Stroud and Johannes (2014).
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Ornstein—Uhlenbeck process. At interval (t,t + dt), its Fuler scheme approzimation is
hivar = (1 — kpdt)hy + 0p(Birar — Br) == dnhy + €vtar-

Given the property of Brownian motion, .14 ~ N (0,02dt). Data is generated from this
continuous setting. To apply nonparametric estimation of spot volatility, we need to select k
consecutive time intervals (dt = Al') to construct “local estimation window”. This implies
that we need to move from “observation” dynamics to “block” dynamics. If we simulate

data from the system above, we have
Pkt = Onhir(b-1)ae + Evvhar & -~ Gphy + (OF " rpar + - + Erinar) -
Thus, the “block” dynamics is given by
hjs1 2 Gl + €, (18)

where ej 1 = QSZ’lngt + -+ tykar- The variance of ej11 = ¢h Etadar + -+ Etakar 18
o2 = ordt(1 — ¢i¥)
‘ 1
Since €4, . .., Epipar are i.0.d. and follow Gaussian distribution. Given the property of
Gaussian distribution, for finite fized k, eji1 follows Gaussian distribution. This justi-
fies the use of Gaussian distribution to model transition dynamic of volatility process in
Model 1-3. For instance, if dt = A = 1/390, o, = 1.2, k = 5, and k, = 2, then
On =1 — kpdt ~ 0.9949, ¢ ~ 0.9746 and
Vo= “f%di(l_—;%ik) ~ 0.1345.
By comparison, If dt = Al = 1/23400, o, = 1.2, k = 30, and k, = 20, then ¢, =

1 — kpdt ~ 0.9991, ¢k = 0.9747 and

dt(1 —
NEE %—</>2)N00424
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Table 2: Posterior results from MCMC under the three DGPs

True Value Posterior Mean Posterior Std dev.  2.5%  97.5% Inefficiency

DGP 1
0] 0.9746 0.9467 0.0134 0.9175 0.9701 2.5385
Oe 0.1345 0.1369 0.0159 0.1084 0.1715 3.5158
I -6.2000 -6.2556 0.0666 -6.3881 -6.1217 1.0953

DGP 2
0] 0.9746 0.9598 0.0093 0.9404  0.9768 1.9338
Oc 0.1345 0.1668 0.0157 0.1378  0.1998 3.3181
Iz -6.2000 -6.1938 0.1150 -6.4283 -5.9740 1.0272
K 0.0047 0.0060 0.0019 0.0029 0.0101 1.1570
oy 1.2000 1.1112 0.3587 0.6621 2.0415 1.3829
i 0.8000 0.7518 0.2852 0.1993 1.3142 1.1296

DGP 3
0] 0.9746 0.9567 0.0104 0.9350  0.9759 1.8683
Oc 0.1345 0.1678 0.0162 0.1374  0.2006 3.1977
Iz -6.2000 -6.1454 0.1056 -6.3594 -5.9430 1.0180
K 0.0047 0.0056 0.0018 0.0028 0.0098 0.7970
oy 1.2000 1.0186 0.3707 0.5858 1.8983 1.1014
I 0.8000 0.7520 0.1508 0.4578  1.0527 0.7298
b 0.7000 0.7561 0.0497 0.6582  0.8532 1.3300

In Table 2, we summarize the posterior estimation results for various DGPs. For DGP
3, we set b = 0.7. In each MCMC procedure, we run 110,000 iterations, discarding the
first 10,000 draws. The 2.5% and 97.5% columns in Table 2 refer to the 2.5% and 97.5%
percentiles corresponding to the MCMC outputs. It is obvious that the credible intervals
generally cover the true values of the corresponding parameters. The last column of Table 2
reports the inefficiency factors, based on 100 lags of the autocorrelation functions, indicating
our MCMC algorithm is very efficient. In addition, we plot the MCMC samples, the

corresponding posterior densities, and their sample autocorrelation functions in DGP 1
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to DGP 3. Figure C.1 to Figure C.3, respectively. All the plots suggest that our MCMC
samples converge well and our proposed method is effective.

Our method allows us to extract spot volatility by estimating E <exp(l~1t / 2)|3’“T>. This
is the smoothed estimate of spot volatility. To see the effectiveness of our spot volatility
estimate, in Figure 3 we plot the fixed-k nonparametric estimate of the spot volatility (the
blue solid line), the true spot volatility (the red solid line), and the smoothed estimate of
spot volatility (the cyan dashed line). It is clear the smoothed estimate of spot volatility
is very close to the true spot volatility and much smoother than the fixed-k nonparametric

estimate of the spot volatility.

4.2. Model selection

In this part, we discuss the effectiveness of using DIC and marginal likelihoods for model
comparison and selection. As we have discussed previously, one should expect that the
marginal likelihood method chooses the correct model. However, model selection based on
DIC does not guarantee the selection of the true model, since DIC aims to select a model
that minimizes the KL “distance” between the DGP and the plug-in predictive distribution
asymptotically.

We consider DGP 1, DGP 2, and DGP 3 that match Model 1, Model 2, and
Model 3. For DGP 3, two values for b are considered, b = 0.7 and b = 0.3. Specifically,
we focus on 1-minute returns over daily trading hours from 09:30 to 16:00, assuming 22
trading days within one month, and the local estimation window size is fixed at k = 5.
Given this specification, we have T' = 22, A,, = 1/390, and accordingly, a total of m,, =
T/(kA,) = 1716 local nonparametric estimation blocks, which serve as the observations
in the observation equation of the state-space model (More detailed descriptions for this

scheme in section 2.3). For each DGP, we simulate a sample path, we then estimate

Model 1, Model 2, and Model 3 by the MCMC algorithm and calculate DIC and
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Figure 3: In each figure we plot the fixed-k nonparametric estimate of the spot volatility
(the blue solid line), the true spot volatility (the red solid line), and the smoothed estimate

of spot volatility (the cyan dashed line).
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marginal likelihood for each model. Finally, we repeat the exercise for 100 times and then
calculate the averaged DIC value and the average log marginal likelihood value across 100
replications. Note that DIC prefers a model with a smaller value while marginal likelihood
prefer a model with a larger value.

Table 3 reports the averaged DIC value (the left panel) and the average log marginal
likelihood value (the right panel).® For each DGP, the smallest DIC value and the largest
marginal likelihood value are highlighted in boldface.

We first examine the performance of DIC for model comparison. It is known in the
literature, a model with the lowest DIC does not necessarily match the DGP that generates
the data. One can see from Table 3 that this is indeed the case. Although under DGP 1,
DGP 2, DGP 3’ the averaged DIC value is the smallest for the true model, it is not the
smallest for the true model under DGP 3. In this case, Model 1 has the smallest DIC
value on average, followed by Model 2, while the true model, Model 3, has the largest
DIC value on average. With a large value of b, in DGP3, the diurnal pattern is weak.
The diurnal pattern attenuates as b draws closer to 1. This study suggests that DIC has
a better chance to select correct model when the diurnal pattern is strong than when it is
weak.

We then examine the performance of marginal likelihood for model comparison. How-
ever, for each DGP, it is expected that marginal likelihood would effectively select the
correct model asymptotically. This is indeed reflected by the average log marginal likeli-
hood values shown in Table 3. In each column of the right panel of Table 3, the model
with the highest average log marginal likelihood matches the DGP.

Finally, we check the performance of the particle filter for generating forecasts of spot

volatility. Figure 4 presents the nonparametric estimate of the spot volatility (the blue solid

6We conduct this simulation study on a Linux machine equipped with AMD Ryzen 9950X processor
with 16 cores and clock speed of 5.20GHz. A similar Monte Carlo simulation design can also be seen in Li,

Yu, and Zeng (2020).
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Table 3: Model selection of alternative models by DIC and marginal likelihood under the

three DGPs

DGP1 DGP2 DGP3 DGP3 |[DGP1 DGP2 DGP3 DGPY
(b=07) (b=0.3) (b=07) (b=0.3)

DIC Marginal Likelihood

Model 1 | 3852.5 3937.3  3975.3 4072.8 |-1923.6 -1960.5 -19859  -2035.6
Model 2 | 42223  3945.6 39774 4064.9 | -1928.0 -1950.6 -1977.8  -2032.4
Model 3 | 4011.1 3917.8  3995.0 3972.3 | -1930.7 -1953.4 -1959.6 -1960.4

line), the smoothed volatility estimate (the cyan dashed line), the true spot volatility (the
red solid line), and the one-step-ahead forecast of volatility from the particle filter (the green
solid line) based on simulated data. The gray shaded area refers to the posterior credible
intervals for forecasted spot volatility. To demonstrate the performance of our methods
for generating forecasts of intraday spot volatility, we simulate ultra-high-frequency tick-
by-tick returns, i.e. A, = 1/(6.5 x 60 x 60) = 1/23400. We specify the local estimation
window size as kK = 5 and k£ = 10, which correspond to 5-seconds intervals and 10-seconds
intervals, respectively. This means that, for generating forecasts of intraday spot volatility,
the one-step ahead forecast refers to the next 5-second interval for £ = 5 and the next 10-
second interval for k = 10. Meanwhile, we split the trading time in each trading day (09:30
to 16:00, 23400 discrete intervals in total) into two parts and use data collected in the first
70% to estimate model parameters using MCMC. Then we fix the model parameters at
the posterior mean and apply particle filter over the remained 30% time to the end of the

trading day.

Remark 4. It is possible to consider A,, = 1/390 as in the foregoing discussions. However,
local nonparametric estimation based on data would be limited with A, = 1/390 in each
trading day. For instance, with A, = 1/390 and k = 5, one can obtain 390/5 = 78
local nonparametric estimations of spot wvolatility. Therefore, it is advisable to use data

from several trading days to first estimate the model parameters, and then perform out-
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of-sample forecasting. Theoretically, one can follow an expanding window scheme and re-
estimate model parameters when new return data become available, but this would increase

the computational burden.
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Figure 4: This figure presents the nonparametric estimate of the spot volatility (the blue
solid line), the smoothed volatility estimate (the cyan dashed line), the true spot volatility
(the red solid line), and the one-step-ahead forecast of volatility from the particle filter
(the green solid line) based on simulated data. The gray shaded area refers to the posterior

credible intervals for forecasted spot volatility.

5. Empirical Applications

The Bayesian approach we have proposed in this paper is readily applicable to investigate
the intraday volatility pattern of the high-frequency factors in Aleti and Bollerslev (2024).
Since Fama and French (1992) and Fama and French (1993), there has been a substantial
amount of literature discussing factors for modeling equity returns, as they offer a parsimo-
nious statistical description of the returns’ cross-sectional dependence structure. Generally

speaking, traded factors, broadly discussed in empirical finance literature, are mainly about
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characteristic-sorted portfolios, where portfolios of assets are constructed based on cross-
sectional characteristics of assets. For instance, the size factor in Fama and French (1992)
is constructed by monthly sorting observed returns based on market capitalization, divid-
ing assets into portfolios according to this characteristic, and then taking the difference in
average returns across these portfolios. In the high-frequency setting, the high-frequency
factors or high-frequency factor portfolios are still constructed using conventional methods
(such as tercile sorting with monthly rebalancing and value weighting), but using price
data, sampled at a 1-minute frequency, to construct high-frequency returns. This is in line
with Ait-Sahalia, Jacod, and Xiu (2024), which advocates the use high-frequency data to
re-investigate the conventional asset pricing topics. In Aleti (2023) and Aleti and Bollerslev
(2024), the authors construct a novel dataset of high-frequency six factors in Fama and
French (2015) based on common stocks on NYSE/NASDAQ/NYSEMKT. These factors
are Mkt (market risk premium), SMB (size factor), HML (value factor), RMW (profitabil-
ity factor), CMA (investment factor), and UMD (momentum factor). All these factors are
constructed using methodologies that are faithful to the conventional papers, while utiliz-
ing high-frequency price data from the NYSE Trade and Quote Database (TAQ) through
WRDS. This dataset contains 1-minute returns of these six factors for all common stocks
listed on the three primary exchanges (NYSE, NASDAQ, NYSEMKT) from 09:30 to 16:00
each trading day, spanning from January 1996 to December 2020. In this section, we apply
the Bayesian spot volatility modeling method to examine how the volatility patterns vary
across these six high-frequency factors and which model specifications best fit or explain

the data.
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Table 4

DIC

Mkt SMB HML RMW CMA UMD

September, 1999

Model 1 5043.0  4888.3 3971.6 37814 3835.1 3659.3
Model 2 5062.0 4901.0 39749 3782.6 3842.6 3663.3
Model 3 5010.2 4852.6 3909.1 3708.6 3740.5 3545.3

November, 2008

Model 1 3702.9 3843.8 3656.6 38144 38823 3802.5
Model 2 21771.0 4018.6 3642.5 3800.3 3878.2 3781.1
Model 3 83919.0 56629.0 9766.5 12164.0 3822.3 5713.9

March, 2016

Model 1 4397.7  4330.6  4546.6  4541.7  4458.0 4910.8
Model 2 4358.2  4309.0 4491.2 4485.7 44114 4877.2
Model 3 4340.5 4259.2 4505.2 4478.8 4386.9 4885.4
May, 2020

Model 1 4257.0  4136.2 42887 4072.6 3902.2 43279
Model 2 4247.0 41331 4224.8 4025.3 3867.6 4242.2
Model 3 4197.6 4068.0 42314 3985.9 3819.3 42524

We calculate DIC and model marginal likelihood for each of these high-frequency factors
in Table 4 and Table 5, respectively. Each of these two tables has four panels collecting
results for four selected periods. The results in these two tables are rich for interpreta-
tion. First, since DIC targets model fitting performance while balancing model complexity,
Table 4 shows that, for the Mkt and SMB factors, the spot volatility model specification
with better fitting performance is not necessarily the most comprehensive one (Model 3).
In comparison to September 1999 and the other two periods (March 2016 and May 2020),
DIC favors a simpler specification (Model 1 with a smaller DIC) for the spot volatility
dynamics. For the HML factor, DIC favors Model 2, which does not directly model the

polynomial intraday diurnal pattern in November 2008, March 2016, and May 2020, rather
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Table 5

Model Log-marginal Likelihood

Mkt SMB HML RMW CMA UMD
September, 1999
Model 1 -2647.8  -2451.6 -1985.3 -1887.3 -1915.8 -1827.7
Model 2 -2649.6  -2450.9 -1986.9 -1889.7 -1919.0 -1832.0
Model 3 -2590.5 -2428.6 -1955.2 -1855.8 -1872.2 -1775.0
November, 2008
Model 1 -1831.8  -1934.1 -1820.3 -1899.1 -1943.9 -1900.3
Model 2 -1773.9  -1892.6 -1819.3 -1904.1 -1940.9 -1897.1
Model 3 -1720.3 -1818.4 -1794.6 -1859.3 -1909.8 -1867.2
March, 2016
Model 1 -2197.8  -2162.1 -2281.7 -2274.6 -2236.9 -2462.3
Model 2 -2178.8  -2146.8 -2250.9 -2247.7 -2207.5 -2432.2
Model 3 -2170.2 -2135.0 -2255.1 -2251.6 -2202.9 -2443.9
May, 2020
Model 1 -2128.5  -2070.9 -2139.2 -2037.2 -1957.0 -2166.3
Model 2 -2131.6  -2061.1 -2099.1 -2019.1 -1928.1 -2116.5
Model 3 -2101.8 -2036.4 -2109.2 -1998.5 -1911.0 -2130.2

specification, is preferred.
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than the nested Model 3 as seen in September 1999. Similarly, for the RMW factor, DIC
suggests the nested model specification (Model 3) during the three periods (September

1999, March 2016, and May 2020), while in November 2008, Model 2, as a simpler model

Second, as we previously demonstrated through simulation studies, model log-marginal
likelihood targets the model with the best interpretation. Accordingly, Table 5 implies
that the intraday volatility patterns of these six high-frequency factors are ubiquitous, but
this is not necessarily always the case. There are a few exceptions in which, by comparing
model log-marginal likelihoods, a more parsimonious model that does not directly model

the intraday volatility pattern is selected. For instance, as shown in Table 5, Model 2,



rather than Model 3, matches the intraday volatility patterns of the HML, RMW, and
UMD factors better in terms of interpretability. Finally, the results in Table 5 also directly
imply that the diurnal intraday volatility patterns of high-frequency factors vary over time

and differ across factors.

6. Conclusion

A key contribution of Bollerslev, Li, and Liao (2021) is the development of fixed-k infer-
ence theory for time-varying spot volatility. While fixed-k inference avoids the need for an
expanding local estimation window as the sample size grows and provide a “finite sample”
inferential procedure, it introduces inconsistency and noise in nonparametric spot volatility
estimation. To mitigate these limitations, we propose a Bayesian framework with multiple
model specifications for spot volatility in high-frequency data, grounded in fixed-k the-
ory. All models are formulated as nonlinear non-Gaussian state-space systems, enabling
Bayesian estimation, volatility extraction, and model comparison.

Our approach offers two major advantages. First, it significantly reduces the noise in-
herent in fixed-k spot volatility estimation in high-frequency settings. Second, the Bayesian
framework naturally supports model estimation, volatility extraction, model selection, and
comparison across competing specifications. Simulations demonstrate the effectiveness of
our methods: the designed MCMC and particle filter algorithms accurately recover latent
spot volatility, while model performance can be assessed via DIC or marginal likelihoods
— depending on whether the focus is volatility fitting or pattern explanation.

Building on this theoretical and simulation-based foundation, we apply our Bayesian
spot volatility framework to a novel high-frequency factors dataset, uncovering distinct
volatility patterns across factors and over time. Empirically, the most interpretable specifi-
cation typically includes volatility jumps and an intraday polynomial pattern. However, for

pure fitting accuracy, simpler models occasionally outperform. Our framework is readily
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extensible to other settings requiring high-frequency volatility analysis, though we defer

such empirical applications to future work.
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Appendix

A. MCMC Procedure for Stochastic Volatility Model
with Jumps

Since we are doing Bayesian analysis using Gibbs Sampling, we collect local nonparametric
estimation of volatility into data and treat all the remained components in the model as

parameters in a generic sense.

{In(é,;)}" : data, for instance, nonparametric estimation of spot volatility

In(c, ;)" = {h;}"'" : parameters, latent spot volatility
]/ ) 5=1 JJj=1

{gb,,u,og} . parameters, volatility parameters

b : parameters, intraday pattern parameters

{Jj};.r:l : parameters, jump component indicator

{n;}""", . parameters, jump component magnitude

J=1

{/{,,un,of,} . parameters, jump parameters

A.1. Sampling jump components and jump parameters

e Sampling {J;}/. This sampling step is conditional on data {¢,;}""", and updated

{R}7 .02y, n) and {s.p1,.0%}. Define

& = hjmi—ohy = (1—¢)pu+ Jm; +ej,



which implies that
&= = (=) pu+n;+ej,
§i1=0 = (1—=9)u+e;

Since 7; and e; are assumed to be normally distributed independently with each other

such that 7; ~ N (u,,07) and e; ~ N(0,02), this further implies that
&= ~ N((L=0)p+ py, 00 +07),

&1 n=0 ~ N((1=0)p0?).

With x updated within Gibbs sampling loop, updating {Jj};l"l as follows

kv (&3 (1= @)+ puy, 02 + 02)
(1= k) fn (&5 (L= @), 02) + Kfn (& (1 — )+ pin, 02 4 02)

P{J;=1 | rest} =

mn

Sampling {nj}j - This sampling step is conditional on data {cn]} |» updated
{ } , o,y 02}, {J; }] 1, and {H,un,an}. Given the dynamic transition system

stated above, if J; = 1, then

(In(én;) +Ink) | h; ~ Inx} or GMM approximation

hjsa :M+¢( — ) +1n; +ej

where 7); is regarded as parameter with prior distribution such that n; ~ N (,un, 0,27),
therefore posterior distribution of 7; conditional on all the rest is based on the fol-

lowing joint likelihood function

I (77]’”777 n) fN( J+1 ¢ﬁj_( — O N5, 0 e) flnx (ln(cnj) h)

that is
1 (nj — a)°
exp{ —————_ % x
V2mo, P { 2072,
2
1 ( i1 — oh; —(1—(15)#—77]') . -



This further implies that

= 20+
207

n; | rest o exp{—

(g = by — (L= 6)t)” =2 (Ryr = 0By — (L= )} my + 0

2
20

11 1 [ 1 —¢h — (1= ¢)u
X expq 5 <§ + —) 77J2- + (U—Z + hj+ 5 n;
n e

~ N v/

~
coef_b

o exnd 1 ( o coefb)2
P 2(4/1/coef_a)? T coet a ’

Therefore posterior distribution of 7; | rest is normally distributed with mean equal

LN (i hyn = ¢hy = (1= )
PR 2T 2 )
oy 07 os lop
and variance equal to
1+1‘1
oy oF '

e Sampling x. This sampling step is conditional on data {¢é, j} |» updated {71]}

to

mn

Y

Jj=1

{o,p,02}, {J; Fiys An b2y and {r, py, 0% }. Since {J;}7 follows Bernoulli distribu-
tion, Bern(k), and by specification we as econometricians have prior knowledge on
k such that s follows Beta distribution B (v, fx), then k is sampled from posterior
distribution conditional on {J;}77,. Actually, {J;}]" as binary random variables,
realizations of the sum of {J;}' lie in between 0 and m, and we denote it as k.

Given that

Lk | r) (ZJ =k | ma, K )Z o KF(1— k)™,

k



and the probability density function of Beta distribution !

kU1 — k)Pt
B (o, Bx)

T (K | ay, Bs) =

then the joint likelihood of k£ and k is given as follows

L(k ‘ FL)'TF(K: ’ amﬁn)'

By integrating out x from this joint likelihood as follows yields

£ (k| My s ) = / L(k | 5) -7 (s | o, B)) di

My, 1 /1 fta 1 g
_ K Qg 1 — K mn +Bk ld/f
A ey .

Mn | B(k+ a,,m, —k+ 5x)
. B (ar. B,)

mny, B (ZT:TH Jj‘i‘ammn_zzza Jj+ﬁn)
I B (ax, Bx) '

Given the property of Beta function and Gamma function, it is easy to show that

conditional on realizations of {J;}"", posterior distribution of x follows Beta distri-

Jj=b

bution as B (Zm” Jj + o, my, — Zm” Jj+ 5&)

2

e Sampling o,

and p,. Given the prior structure (Mm 0727) ~ NIG (,&T,, Aoys Qo s ﬂgn)

i.4.d.

and for a given y, and o7, 1; "~ N(py, 07). Then, ju,, 00 [ {n;}12 . {J;};2, follows

B (e, B.) denotes beta function defined as the Euler integral of the first kind,

1
Blaw,6) = [ 1 a- 0" at
0



normal-inverse-gamma distribution NZG (“n’ Aot O ,ﬁ*n> with

f, = (Z Jinj + /277)\0”> / (Aan + Z Jj)
j=1 j=1

Mn

Xoo= Ao, Y

J=1

Oé;_17 = ij/2+060n
7=1

Mmn 2 mn mn
B = |- (Z nj + ﬁn)\an> / (Aan +) Jj) Y () A+ Aoy i /2 + B,
Jj=1 j=1 j=1

e Sampling b. Since we have assumed that b follows a prior distribution such that
b ~ TN (jiy, %, ap, By) with TA denoting a truncated normal distribution, we can
show that the posterior sampling of b follows a conjugate scheme conditional on data

{¢n;},2,, latent variables and other parameters.

A.2. Sampling volatility parameters and latent spot volatilities

e Sampling {ﬁj}mn. This sampling step is conditional on data {In(¢,;)}’; and
j=1

updated {¢, u, 02}, {J; }] 1 {773‘};-7:1’ and {/{,un,ag}. Given the approximate lin-
ear Gaussian state-space model, Kalman filter and forward filtering and backward

smoothing (FFBS) algorithm (Giordani, Pitt, and Kohn, 2011) applies for sampling

{ﬁ]} " in this setting.

J=1

e Sampling p. This sampling step is conditional on data {In(é, ;)}", updated {¢, o2

j=b

{ } A }] L {nj} and {x, ,, o ,7} Conditional on updated {J; }] 1 {UJ}J L

and {h } " updated within Gibbs loop, sampling p is straightforward as e; = h]H —
j=1

(ﬁizj — (1 — ¢)p — J;jm; is normally distributed with zero mean and variance equal to



o2. Recall the functional form of joint normal density function as follows

HfN jn]7(1_¢),u703)

o1 ! G = Im = (=)
- H Nz exp{ 207 } :

J=1

As we have specified the prior 7(u) ~ N (ji,3?), then the joint likelihood is given as

follows

mp—1

14 [, 5 H fN 177]7(1_@5)/%03)

mp—1 mp—1
- [ ] exp{—gm—w o 2 6= T <1—¢>m2}

1 mp—1

x eXP{-%(M—ﬂ)Q— 52 [ﬁj—Jjnj—(1—¢)M]2}-

€ le

Again by applying the method of completing squares, we can show that conjugate

posterior distribution of i is Gaussian distribution with mean equal to

e == [ S o)

and variance equal to

{1 (mn—l)(l—cbql

= T 3 .

o o2

e Sampling o2. This sampling step is conditional on data {¢, };":"1 and updated {¢, u},
{ } , {J; }] 1 {nj};.nz”l and {/-f, un,ag}. This sampling step is based on the fol-

lowing joint likelihood function assuming that o2 has inverse-gamma prior equipped



with shape parameter «,, and scale parameter 3, ,

03 | rest o (03)7%’71 exp{—%} > (Ug)*(mrl)ﬂ %

mn—l
o (o2) 0T eXP{ <ﬁoe+ Z —Jﬂ?j]2> /03}

which suggest that o2 | rest ~ ZG (ozge + 2l g+ 1 Zm"_l € — (1 —¢)u— Jﬂ]j]Q)'

e Sampling ¢. This sampling step is conditional on data {énj}m and updated {u, 02},

{ } A }j i’ {nj}m” and {x, 1, 0 2} If prior imposed on ¢ is

o {EO) 0o

then full conditional density of ¢ is proportional to

W(@ﬁ 1 exp{_[ékj—t]jﬁj—(l—sﬁ)u]}.

1 V2mo, 20?2

Recall that

> [ﬁj-i-l —p—=Jmn; — ¢ (7%‘ - M>]2

where




and

> i <}~lj+1 —p— Jﬂ?j) (;lj - M)
~ 2 :
Z;ﬂznl (hj - N)

This suggests that we can use N/ <$, V¢> as proposal distribution to construct Metropolis-

b=

Hastings algorithm for sampling ¢. Specifically, within the loop of Gibbs Sampling,
given the current value of ¢~ at the g-th iteration, sampling ¢’ from N <ng5, V¢>.

Since the associated acceptance-rejection ratio is constructed as

.

w1 ()™ 1L (002} {3}
7T(¢(q_1)>f({ilj} | {J; }J 27{%}] Y A0, 1,02} { K iy, 0 n}>

(.

min ¢ 1,

~
\ part I

Iy <¢(q_1); 9, V¢)
\ I <¢’;¢3> V¢>

—~
part II )

X

J/

then fy (¢><q*1>; &, vd,) and fy (¢’; &, v¢) would be cancelled with exp {_ﬁ (¢<q71> _ ¢;>2}
contained in the denominator of part I and exp {—ﬁ ((b’ — (13)2} contained in
the numerator of part I respectively. This suggests that the proposed value ¢ is
accepted as @@ with probability equal to min{l,exp {g(gb’) — g(gb(q‘l))}} where

g(¢) =logm (¢). If the proposed value is rejected, set ¢(? equal to ¢(4=1).

B. Particle Filter for Calculating Log-likelihood

We follow Doucet and Johansen (2009), Malik and Pitt (2011), and Stroud and Johannes
(2014) by constructing a particle filter algorithm to approximate the log-likelihood function
used for calculating DIC, model log-marginal likelihood, and the marginal predictive distri-

bution forecasting. Our particle filter algorithm is summarized as follows. Let {In(é,1.;)}

A-8



denote the local nonparametric estimation of spot volatility from 7,1 to 7, ;. We denote
the latent state variables as l~zj = h; + p. For a fixed value at 0, the likelihood function can

be approximated using auxiliary particle filter (APF) as follows

£ (e 16) =] (% 27&) (% Zw;ﬂ) , (B.1)

j=1 i=1

where N denotes the number of particles used in APF. The generic steps for obtaining

{Wj(i)} and {w](-i)} are summarized as follows:

(]

1. Start with sample ﬁ;

)1 ~ D (ﬁj_l | ln(ényl:j_1)>. For the initial state iz(()i), we sample

iz((f) from initial stationary distribution following mixture normal such that

OB R (024 02+ k) + (1 — k) 02 — K*pp
0 /’L 1 o Qs’ 1 . ¢2 Y
by noting that

ej+ Jinj ~ N (py, 02 + 072]) + (1= KN (0,07),

and
E(ej +m5) = Ky,
Var (ej +1;) = /{(03+03,+p§7)+(1—/§)U§—/{2u3}.
Accordingly,
~ f{;un
E(h) - ,
0 Mt -6
N k(o2 + 02+ p2)+ (1 —k)o? — K2l
(i) - Sl ) 1ot

2. Compute 7T‘(i> X p (ln(éw) ] izy)), where

j

b =E (ﬁj | 15, m@"vl:j*l)) '



More specifically, note that
iLgZ) = E <iLJ | ﬁ§?1,ln(én71;j_1)>
= oh{, + (1= ¢) p+E [Jj_1nj1] + E ;1]

= cbily,)l + (1= @) u+ K.

. With the results calculated in step 2, we then generate

ko~ M (ﬂ'(l) . ,ﬂ'éN)>

Jj

where M(-) refers to the generic multinomial distribution specified by {ﬂ‘gi)}.

. Generate ;LE»Z) ~D (ﬁ] | Bg“i, ln(éml:j_l)). This is a mixture normal distribution such

that if J;_y = 1, N ((1 = @) p+ iy, 07 + 02); if J_1 = 0, N'((1 — ¢) p,02). There-

fore,
=) 5k .
h; | hg—;vln@nlj—l)
N (cbilj—l + (=) pu+poegj1+ 00+ 02(1 - P2)> if Jia=1,
N (qﬁﬁj—l +poegj1+ (1 — @) p,oZ(1 — P2)> it Ji1=0.
Hence,
=(0) | 5 (k1) A T _ , 2 201 _ 2
hy | h; g, (Cnnj1) ~ KN (Qhj 1+ (1 — @)+ poegj 1 + piy, 0, + 05 (1 — p)

+(1—r)N <¢Ej_1 + poegj 1+ (1 — @) p,02(1 — ,02)> :
. Compute w](-i) X p (ln(én,j) | szEl)) /W](-ki).

. Generate

i

7 (4)
and set hj ;

A-10



C. Additional Plots
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Figure C.1: Posterior densities, MCMC samples, and autocorrelation functions for DGP
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Figure C.2: Posterior densities, MCMC samples, and autocorrelation functions for DGP
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Figure C.3: Posterior densities, MCMC samples, and autocorrelation functions for DGP
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