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1. Introduction

Financial market volatility, as a key measure of risk, plays a vital role in both financial

theory and practical applications of asset pricing (Engle, 2004). Early literature recognized

the time-varying nature of daily volatility and focused on parametric volatility modeling

using daily returns. Seminal contributions include the ARCH model by Engle (1982), the

GARCH model by Bollerslev (1986), and the stochastic volatility model by Taylor (1982).

These models provide daily volatility estimates as a byproduct of parameter estimation.

More recent literature employs daily realized volatility (RV), a nonparametric estimator

of daily integrated volatility (IV), which is constructed from intraday returns, typically at

5-minute intervals. By leveraging high-frequency data, RV delivers more accurate volatility

estimates than daily returns. This has spurred extensive research on modeling and forecast-

ing RV, as seen in Andersen et al. (2001a), Andersen et al. (2001b), Andersen et al. (2003),

Gatheral, Jaisson, and Rosenbaum (2018), and Wang, Xiao, and Yu (2023), among oth-

ers. Beyond volatility estimation, RV has broad applications, such as constructing GMM

estimators for diffusion models (Bollerslev and Zhou, 2002).

While parametric models for daily volatility are ill-suited for high-frequency spot volatil-

ity, which exhibits more complex dynamics. Developing accurate high-frequency volatility

models is crucial for understanding intraday and interday volatility behavior, with implica-

tions for asset pricing, forecasting, trading, and risk management. For instance, portfolio

managers increasingly require intraday rebalancing, necessitating sub-daily volatility and

covariance forecasts.

Stroud and Johannes (2014) pioneered high-frequency volatility modeling by proposing

a multiplicative specification for returns, incorporating autoregressive stochastic volatility,

diurnal patterns, and announcement effects. Their Bayesian estimation using 5-minute

S&P 500 futures data confirmed the significance of all three components. This work laid

the foundation for further advances, particularly with ultra-high-frequency (UHF) data.
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For example, Bekierman and Gribisch (2021) and Watanabe and Nakajima (2024) adopt

the same multiplicative specification but introduce alternative dynamic models for high-

frequency volatility. However, while RV improves daily volatility estimation, constructing

high-frequency models from 5-minute returns may be less effective than using 5-minute spot

volatility estimates derived from UHF data. This paper aims to develop high-frequency

volatility models using such estimates.

Recent years have seen significant progress in spot volatility estimation. Foster and

Nelson (1996) introduced nonparametric estimators for diffusion models, while Kristensen

(2010) proposed a kernel-weighted IV estimator with vanishing bandwidth. Zu and Peter

Boswijk (2014) advanced the field with an estimator building on Zhang, Mykland, and

Aı̈t-Sahalia (2005) and Mykland and Zhang (2008), establishing asymptotic theory under

the assumption of an increasing block size k. Departing from this, Bollerslev, Li, and Liao

(2021) developed a fixed-k inference framework, where estimation error follows a scaled

chi-squared distribution.

Building on Bollerslev, Li, and Liao (2021), we propose a class of high-frequency spot

volatility models within a nonlinear, non-Gaussian state-space framework. The observation

equation links the fixed-k spot volatility estimator to the true latent volatility, ensuring

theoretical rigor.

We develop a Bayesian estimation approach via Markov Chain Monte Carlo (MCMC),

enabling parameter estimation, latent volatility extraction, and model comparison. The

posterior mean of the latent volatility serves as a smoothed estimate. For model selection,

we design a particle filter to approximate the marginal likelihood, facilitating comparisons

via information criteria. Additionally, this filter facilitates one-step-ahead volatility fore-

casting.

The paper proceeds as follows: Section 2 reviews the fixed-k framework and presents

our proposed models. Section 3 details the Bayesian methodology, while Section 4 and

3



Section 5 cover simulations and empirical applications. Section 6 concludes. Technical

details are deferred to the Appendix. Throughout the paper, for two random sequences an

and bn, we write an ≍ bn, if an/C ≤ bn ≤ Can for some finite constant C ≥ 1.

2. Model Setup

2.1. Individual asset price process and spot volatility

Before we introduce our high-frequency volatility models, we first clarify some relevant

mathematical notations and related concepts. All random variables are defined on a fixed

(complete) probability space (Ω,F,P) with filtration (Ft)t≥0. Following Andersen et al.

(2001b), we adopt the assumption that logarithmic asset prices follow a univariate diffusion.

In particular, for the a specific individual asset, the logarithmic return is modeled as

pt − pt−1 ≡ rt =

∫ t

t−1

µsds+

∫ t

t−1

σsdWs, (1)

where Ws stands for the standard Wiener process and hence, the corresponding volatility

measure is based on the quadratic variation process, denoted by Qvart, which yields

Qvart = [p, p]t − [p, p]t−1 =

∫ t

t−1

σ2
sds. (2)

This is commonly referred to as the integrated volatility in the literature. It is broadly

known in literature (as in Andersen et al., 2001b; Barndorff-Nielsen and Shephard, 2002)

that the integrated volatility over non-trivial time interval, such as a day, is an important

quantity of interest in finance. Many nonparametric estimators for daily IV have been

proposed ever since then, and among them the most widely used estimator is the daily RV

based on 5-minute returns.

With the increasing availability of data sampled at ultra high frequencies, how to es-

timate and forecast the spot volatility, that is σ2
t , has drawn a growing interest in the

literature. Based on the mathematical foundation in extant literature, we focus on the
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following model for (log) price process as in the literature,

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt. (3)

This is a continuous-time Itô semimartingale process with drift (bs), diffusion (σs) and jump

(Jt). Making inference of the time-varying σ2
t serves as one major target of the present

paper.

2.2. Fixed-k inference for volatility

When the logarithmic price of an asset follows model (3), Jacod, Li, and Liao (2021)

suggest a way to estimate “spot covariance” in the general multivariate setting, ct = σtσ
⊤
t ,

nonparametrically and uniformly as follows

ĉn,j ≡
1

kn,j∆n

∑
i∈In,j

∆n
i X∆n

i X
⊤1{∥∆n

i X∥≤un}, (4)

where

∆n : T/n

∆n
i X : Xi∆n −X(i−1)∆n

un : truncation threshold satisfying un ≍ ∆ϖ
n , ϖ ∈ (0, 1/2).

In,j : set collecting indices of consecutive increments in j-th block,

such that {1, . . . , n} =
⋃mn

j=1 In,j and |In,j| = kn,j.

Tn,j : Correspondingly, [0, T ] can be dissected as [0, T ] =
⋃mn

j=1 Tn,j

t(n, j) ≡ (min In,j − 1)∆n,

and

Tn,j ≡

[t(n, j), t(n, j + 1)) if 1 ≤ j < mn

[t(n,mn), T ] if j = mn.

Specifically, T can be interpreted as the total length of time or the number trading days

so that ∆n = T/n usually refers to the sampling interval and kn,j denotes the block size.

While it is commonly assumed that kn,j → ∞ in the literature, Bollerslev, Li, and Liao
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(2021) advocate a way of making inference for spot volatility with kn,j = k fixed. To see

the link between the setting of Bollerslev, Li, and Liao (2021, henceforth BLL2021QE) and

the model to be established in our paper, note that BLL2021QE set

In,j ≡ {(j − 1)k + 1, . . . , jk} ,

Tn,j ≡ [(j − 1)k∆n, jk∆n) ,

which is a special case with kn,j = k. Making the inference of spot volatility in a nonpara-

metrically refers to the fixed-k inference for volatility. In the univariate case, ct = σ2
t is

estimated by ĉn,j with the j-th local block size fixed such that kn,j = k, that is,

ĉn,t ≡ ĉn,j =
1

k∆n

∑
i∈In,j

(∆n
i X)2 1{|∆n

i X|≤un}, (5)

for t ∈ Tn,j and j ∈ {1, . . . ,mn}.

According to Theorem 9.3.2 of Jacod and Protter (2012), kn,j → ∞ and kn,j∆n → 0

are needed to ensure the consistency of ĉn,t. The required conditions for the consistency

is intuitive as they require the local estimation block contain an increasing number of

observations (i.e. kn,j → ∞), while at the same time the size of local estimation block

shrinks to zero asymptotically (i.e. kn,j∆n → 0). However, the required conditions for

ensuring the desired consistency of nonparametric spot volatility estimation (i.e., ĉn,t) are

stringent and can hardly be met simultaneously in practice. Set against this background,

the fixed-k inference with local block size fixed can alleviate this issue by focusing on a

single asymptotic scheme that only requires ∆n → 0, which is easy to be achieved in the

high-frequency setting.

By setting the estimation block size k fixed, the resulting spot volatility estimator of

is not consistent, but easy-to-calculate pointwise confidence intervals are available at any

given point in time given the distribution that characterizes the ratio of the nonparametric

estimator ĉn,t to the true unobserved volatility process ct. The main distribution theory

associated with the fixed-k inference for spot volatility is established in BLL2021QE, which
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is summarized as follows for discussion.

Theorem 1 (Bollerslev, Li, and Liao (2021)). Suppose that Assumption 1 imposed

in BLL2021QE holds. Then for any finite subset M ⊆ {1, . . . ,mn}, there exists a collection

of independent random variables
(
S̄j

)
j∈M such that for any j ∈ M and t ∈ Tn,j,

ĉn,t
ct

− S̄j = Op

(
∆(2−r)ϖ∧(1/2)

n

)
= op(1), (6)

where

S̄j = (k∆n)
−1
∑
i∈In,j

(
Wi∆n −W(i−1)∆n

)2
is a χ̄2

k-distributed random variable with χ̄2
k referring to the scaled chi-squared distribution

such that

χ̄2
k ≡ Zk/k, with Zk ∼ χ2

k. (7)

In companion with this definition, we have the scaled inverse-chi-squared distribution

χ̄−2
k ≡ k/Zk, with Zk ∼ χ2

k. (8)

This distribution theory suggests that the distribution corresponding to the induced

noise can be characterized properly. There is an textbook treatment of the log chi-squared

distribution (see Lee, 2012), lnχ2
k, associated with lnZk by taking logs on both sides of

Zk ∼ χ2
k in (8) such that lnZk has following probability density function in analytical form

(in logarithmic form),

ln f (z) = −k

2
ln 2− ln Γ (k/2) +

1

2
kz − 1

2
exp (z) .

We will show how to use the derived distribution theory to establish nonlinear non-Gaussian

state-space models for spot volatility. Before we proceed to the corresponding discussion,

we first demonstrate why we establish a non-Gaussian state-space models by showing that

the distribution of ĉn,t/ct is different from Gaussian distribution when the estimation block

size k is small. For Zk, we have E (Zk) = k and Var (Zk) = 2k, where E(·) and Var(·) denote
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the mean and variance operator respectively. Then for the scaled chi-squared distribution

χ̄2
k, we have E (χ̄2

k) =
1
k
E (Zk) = 1, and Var (χ̄2

k) =
1
k2

Var (Zk) =
2
k
. We plot the density

of χ̄2
k against the density of a normal distribution with mean E (χ̄2

k) = 1 and variance

Var (χ̄2
k) =

2
k
, for k = 5, 10, 30, 60, respectively, in Figure 1. The choice of k = 5 and k = 10

may correspond to the empirical scenario when the price data is sampled at 1-minute

frequency while the researchers focus on the estimation of 5-minutes spot volatility and

10-minutes spot volatility. By contrast, the choice of k = 30 and k = 60 may correspond to

the empirical scenario when the tick-by-tick returns are used while the researches focus on

half-a-minute (30 seconds) spot volatility and 1-minute (60 seconds) spot volatility. The

choice of k = 5 and k = 10 with 1-minute returns is more realistic, but the distribution

of fixed-k spot volatility estimator deviates significantly from normal distribution with the

same mean and variance. This fact motivates the establishment of nonlinear non-Gaussian

state-space models.

Remark 1. It is important to note that the nonparametric estimator as in (5) requires a

selected sequence of truncation threshold un, which is usually selected via thumb rule, as

suggested by BLL2021QE, based on the bipower variation estimator in Barndorff-Nielsen

and Shephard (2004). Instead, one alternative for filtering price jumps in the fixed-k infer-

ence setting is considering a leave-one-out spot variance estimator for each local estimation

window with k returns. To illustrate the key idea, we write the leave-one-out spot variance

estimator as

ĉ leave-one
n,j =

1

(k − 1)∆n

∑
i∗∈I∗

n,j

(∆n
i∗X)2 , (9)

where I∗
n,j =

{
i∗ ∈ In,j : |∆n

i∗X| ⩽ maxi∈In,j
|∆n

i X|
}

and |I∗
n,j| = (k − 1), given our as-

sumption that within each local estimation block there exists at most one price-level jump.

This assumption is reasonable in that for a fixed k, the length of the local estimation block,

k∆n → 0 when ∆n → 0. By construction, it is not hard to derive the distribution of
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Figure 1: In each panel, we show the density of χ̄2
k (blue solid line) and the density of a

normal distribution with the same mean and variance (red dashed line) for various values

of the local estimation window size k.

ĉ leave-one
n,j from “volatility coupling” theory,

ĉ leave-one
n,j

ct
≈ 1

k − 1

k−1∑
i=1

ζ(i) =
1

k − 1

((
k∑

i=1

ζi

)
− ζ(k)

)
,

where ζ1, . . . , ζk are i.i.d. χ2
1 variables and ζ(1) ⩽ ζ(2) ⩽ · · · ⩽ ζ(k) are the correspond-

ing order statistics. We refer such a kind of construction of spot volatility estimate to

the jump-robust spot volatility estimate. The corresponding approximation distribution

1
k−1

((∑k
i=1 ζi

)
− ζ(k)

)
does not have closed-form probability density function, but it is

easy to simulate samples from 1
k−1

((∑k
i=1 ζi

)
− ζ(k)

)
.

Within the fixed-k volatility inference modeling framework, the distribution usually
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does not have a closed form or may have analytical forms with complicated expressions;

however, one can easily obtain simulated samples of reasonably large size. Based on the

simulated samples, we can approximate the probability density function using Gaussian

Mixture Models (GMM). This GMM approximation method can also be applied in other

fixed-k inference setting (e.g., the “Optimal CandlesticK” estimate in Li, Wang, and Zhang

(2022), and more recently in Bollerslev et al. (2024a) and Bollerslev et al. (2024b), among

others) to approximate the “gap” distribution that characterizes the ratio of nonparametric

estimate of spot volatility and the true unobserved volatility process.

To sum up, the theoretical foundation for the fixed-k inference theory lies in the “volatil-

ity coupling” theory in Jacod, Li, and Liao (2021), from which many distributions of dif-

ferent variants can be derived, including the just mentioned “jump-robust” version, the

“Optimal CandlesticK” version, and the most recent one in Bollerslev, Li, and Ren (2024),

among others. These distributions may or may not have closed-form characterizations

and we generally advocate GMM approximation of the simulated samples as the proxy

distribution in our spot volatility model.

2.3. State-space models for spot volatility

Although unobserved spot volatility is indexed continuously in our model, to facilitate non-

parametric estimation of spot volatility, following (5), we assume there exists a surjective

function that maps t ∈ [0, T ] to j ∈ {1, . . . ,mn}. As implied by the fixed-k inference

theory, instead of estimating ln(ct) for t ∈ Tn,j, ln(ct) is approximated by a local constant

ln(cn,j) for the j-th block with j ∈ {1, . . . ,mn}. In the state-space framework, therefore,

we model blocks dynamics. To ensure our notations to be consistent with those in the

literature (such as Chernov et al., 2003), we split each day into M disjoint blocks and the

size of each block is fixed as k. If T represents the total number of trading days, then

n = k(MT ) and ∆n = T/n = 1/(kM). In this case, the total number of blocks for the
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T trading days is mn = MT . For instance, if the price data is sampled minute by minute

within one day, and in each day trading hours start from 09:30 to 16:00. Besides, every 5

minutes are treated as a local estimation block for this case. Then by specification we have

T = 1, ∆n = 1/(6.5× 60) = 1/390, k = 5, and M = 78.

Based on the fixed-k inference theory, we set up the following class of state-space models


ln (ĉn,j) = ln (cn,j) + ϵj, ϵj ∼ ln χ̄2

k or GMM approximation,

ln (cn,j) = alternative models.

(10)

(11)

Clearly, the observation equation comes from the fixed-k theory.

Since ϵj is not a Gaussian variable, all models in this class belong to the class of a

nonlinear non-Gausian state-space models.1

In all alternative models, we assume that the log of the latent volatility process can be

decomposed as

ln (ct) = µ+ ht + st, (12)

where ht is a stochastic volatility process, st the intraday seasonal component. Correspond-

ingly, for each block, we have the following decomposition

ln(cn,j) = µ+ hj + sj, sj = s̃(r), j = 1, . . . ,mn, (13)

where r = (mod (j − 1,M)+1)/M and mod(x, y) refers to the modulo operation that takes

the remainder of any x ∈ Z divided by y ∈ Z.

To capture the diurnal pattern, we assume s̃(r) is a quadratic function. In particular,

it is assumed that s̃(r) = 12(1− b)
(
r − 1

2

)2
+ b as this is the only function within the class

f(r) = c(r−a)2+b that satisfies (i)
∫ 1

0
(c(r − a)2 + b) dr = 1; (ii) argminr c(r−a)2+b = 1

2
.

1As we have mentioned earlier, the distribution of ϵj does not necessarily have a closed-form char-

acterization. GMM approximation ensures that the conditional likelihood can be calculated using the

corresponding particle filter, allowing us to cast the established spot volatility model into a Gaussian

state-space model so that the Kalman filter can be applied, which we will discuss later.
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The first condition is imposed for identification. The second condition assumes that the

diurnal pattern reaches the minimum in the middle of a trading day, an empirical regularity

that has been found in the literature.2 There is a restriction in using the quadratic function.

That is, it implies a symmetric diurnal pattern. In a recent study, Christensen, Hounyo,

and Podolskij (2018) propose a nonparametric method to estimate the diurnal patten and

find an asymmetric diurnal pattern. However, our approach can be easily extended to cover

more complicated deterministic functions for diurnal pattern. Besides, we want to point

out that given the function form of s̃(r), b serves as the key parameter determining the

intraday diurnal pattern.3

We impose AR(1) dynamic with a jumps structure on the volatility process. Specifically,

we assume that the transition dynamics from the j-th block to the (j +1)-th block follows

hj+1 = ϕhj + ej + Jjηj, ej ∼ N
(
0, σ2

e

)
, ηj ∼ N

(
µη, σ

2
η

)
, (14)

where Jj is a jump indicator following Bernoulli distribution Bern(κ), defined by

Jj =

1 with probability κ

0 with probability 1− κ,

with κ being the jump probability and ηj determining the jump size. Given the specified

volatility process dynamics, we briefly discuss here why we advocate GMM to approximate

the distribution of ϵj. In fact, using GMM to approximate a non-Gaussian random variable

is a technique broadly adopted in literature; see, for example, Kim, Shephard, and Chib

2To satisfy the condition that argminr c(r − a)2 + b = 1
2 , we have c > 0 and a = 1

2 . Substituting a = 1
2

into
∫ 1

0

(
c(r − a)2 + b

)
dr = 1 yields 1

12c+b = 1 and c = 12(1−b). Thus, the quadratic function is uniquely

determined by b. The larger the value of b is approaching 1, the less pronounced becomes the quadratic

volatility pattern.
3The model can be extended to incorporate announcement effects, for which an MCMC algorithm can

be designed to conduct posterior analysis.
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(1998); Omori et al. (2007). The main advantage of using GMM is that one can cast the

non-Gaussian state-space model into a standard linear Gaussian state-space model so that

the Kalman filter along with the standard simulation smoother can be applied for extracting

the latent stochastic spot volatility. Given the specification in (10) and (14), it is easy to

note that both ϵj and ej + Jjηj follow a mixture normal distribution. We introduce an

auxiliary latent state variable Sj ∈ {1, . . . , K} to indicate the mixture component of ϵj

that is approximated through GMM.

f (ϵj) =
K∑

ω=1

qωfN
(
ϵj | m̃ω, v

2
ω

)
, (15)

where fN (ϵj | m̃ω, v
2
ω) denotes the ω-th Gaussian component with mean equal to m̃ω and

variance equal to v2ω, assigned with probability qω. {qω, m̃ω, v
2
ω} are determined by the EM

algorithm. We demonstrate the GMM structure for lnχ2
5 and lnχ2

10 using Table 1 and

Figure 1. We approximate lnχ2
5 using a GMM with 7 components and lnχ2

10 using 10

components. The detailed structure of the components is summarized in Table 1. Figure

1 shows that both approximations are accurate.

2.4. Alternative model specifications

In this section, we introduce the following alternative model specifications corresponding

to (13) and (14).

� Model 1

ln (cn,j) = µ+ hj,

hj+1 = ϕhj + ej, ej ∼ N
(
0, σ2

e

)
.

� Model 2

ln (cn,j) = µ+ hj,

hj+1 = ϕhj + ej + Jjηj, ej ∼ N
(
0, σ2

e

)
, ηj ∼ N

(
µη, σ

2
η

)
.
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Table 1: GMM structure

ω k = 5 k = 10

qω m̃ω v2ω qω m̃ω v2ω

1 0.1231 0.9874 0.4817 0.0696 1.9946 0.2476

2 0.1943 1.5760 0.2741 0.0973 2.2823 0.1570

3 0.1417 1.1123 0.4403 0.0842 2.1102 0.2131

4 0.1839 1.7175 0.2223 0.0941 2.2082 0.1816

5 0.0469 0.2557 0.7775 0.0927 2.3577 0.1318

6 0.1696 1.3002 0.3742 0.0277 1.5782 0.3603

7 0.1407 1.8683 0.1677 0.0903 2.1651 0.1957

8 0.0799 2.4201 0.1117

9 0.0950 2.3374 0.1385

10 0.0506 1.8391 0.2891

11 0.0969 2.2597 0.1645

12 0.0614 2.4732 0.0954

13 0.0604 1.9219 0.2676

� Model 3

ln (cn,j) = µ+ hj + sj,

hj+1 = ϕhj + ej + Jjηj, ej ∼ N
(
0, σ2

e

)
, ηj ∼ N

(
µη, σ

2
η

)
,

sj ≡ s̃(r) = 12 (1− b)

(
r − 1

2

)2

+ b, r = (mod (j − 1,M) + 1)/M.

We focus on these model specifications for the following reasons. First, Model 1 is

a straightforward extension of the conventional SV autoregressive process to model the

“block” dynamics in a high-frequency setting. The terminology “block” refers to each

fixed-k local estimation block for spot volatility. Second, Watanabe and Nakajima (2024)

adopted a similar multiplicative specification for the volatility process but did not model

the jump effects on the volatility process, as they found that jumps in the volatility process

have marginal impact on both in-sample fit and out-of-sample forecast gain. However,

the observation equation in the state-space model of this paper is different from that in

Watanabe and Nakajima (2024). We aim to model the jump effects potentially caused by
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(a) GMM (K = 7) for lnχ2
5 (b) GMM (K = 13) for lnχ2

10

Figure 2: In each panel we plot the density, we plot the density of lnχ2
k (blue solid line)

and the density of the corresponding Gaussian mixtures (red dashed line).

system shocks and, therefore, specify the jump components of the volatility process on top

of the basic specification of Model 1 to establish Model 2 for modeling the spot volatility

dynamics. Third, Model 3 incorporates the basic structures of both Model 1 and Model

2 by adding an additional layer of parameter specifications to model the intraday diurnal

pattern of spot volatility. In fact, the multiplicative specification of the latent volatility

process can be regarded as a superposition of different components. Therefore, the ap-

proach for modeling the intraday diurnal pattern can also be extended to other parametric

specifications with more complex parameter structures (for instance, modeling announce-

ment effects using a parameterized exponential distribution with proper decay properties),

with the corresponding parameters sampled using MCMC. We can complete this extension

when necessary. Although the basic multiplicative specifications for the volatility process

are adapted from Stroud and Johannes (2014), they did not provide simulation evidence

for model comparison performance based on different information criteria. Our simulation

studies fill this gap by providing a simulation evidence.
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It is obvious that Model 3 shares the same structure as in (13) and (14) by incorpo-

rating jumps on volatility and volatility diurnal pattern simultaneously. In comparison to

Model 3, Model 1 has the most parsimonious model structure whereas Model 2 keeps

the single-factor structure with Bernoulli type jumps specifications on volatility process.

To compare models across different specifications, we mainly use two methods: Deviance

Information Criterion (DIC, Spiegelhalter et al., 2002, 2014) and marginal-likelihoods. DIC

is a popular method for model selection when MCMC output is ready. DIC has a few nice

features. First, DIC applies to a wide range of statistical models. Second, it does not suffer

from Jeffreys-Lindley-Barlett’s paradox. Third, it can be obtained even under improper

priors. Finally, Li et al. (2025) justify DIC by showing that DIC is an asymptotically

unbiased estimator of the Kullback-Leibler divergence between the data generating process

and the plug-in predictive distribution. Besides, there have been studies of volatility using

relatively low frequency data demonstrating the performance of DIC (Berg, Meyer, and

Yu, 2004).

DIC is given as follows

DIC = D
(
θ̄
)
+ 2PD, (16)

where

D(θ) = −2 ln p (y | θ) ,

PD = −2

∫
[ln p(y | θ)− ln p(y | θ̄)]p(θ | y)dθ,

θ̄ is the posterior mean of parameter θ, and y denotes observable data (i.e., fixed-k non-

parametric estimate of spot volatility in this setting). One should note that DIC captures

trade-off between model fit and complexity, similar to other widely used information crite-

ria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

When making model comparison using DIC, models with smaller DIC values are preferred.

Alternatively, we can calculate the harmonic mean of the log-likelihoods associated

with θ from MCMC runs for each model and make model comparison based on that. This
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procedure is similar to the original idea in Newton and Raftery (1994) that uses harmonic

mean approximation (HMA) to calculate Bayes factor. The reason for using the Bayes

factor for model selection is that it is designed to favor the model that is associated with

the true data generating process (DGP), as opposed to DIC, which mainly targets model

fitting performance. To formally calculate the Bayes factor, one needs to calculate the

marginal likelihood, i.e. m(y), associated with each model. Given the fundamental Bayes

theorem, we have

m(y) =
p(y | θ)π(θ)
p(θ | y)

,

where π (θ) denotes the prior structure imposed on each model. Taking logarithms on both

sides obtains the expression for the logarithm of marginal likelihood,

lnm(y) = ln p(y | θ) + ln π(θ)− ln p(θ | y). (17)

Chib (1995) and Chib and Jeliazkov (2001) suggest calculating lnm(y) by evaluating the

right-hand side of (17) at an appropriate single point θ∗ that has high probability density

in the support of posterior. For the state-space model, one can calculate ln p(y | θ∗) via the

auxiliary particle filter discussed in the appendix. By the law of total probability p(θ∗ | y)

can be decomposed as

p(θ∗ | y) = p(θ∗1 | y)p(θ∗2 | y, θ∗1) · · · p(θ∗qθ | y, θ
∗
1, . . . , θ

∗
qθ−1),

where θ∗ = (θ1, . . . , θqθ) with qθ being the dimension of θ∗. Given the property of MCMC

run, the decomposition of p(θ∗ | y) can be approximated via a sequence of reduced MCMC

run (Chib and Jeliazkov, 2001). Accordingly, one can use θ̄ to approximate θ∗ and calculate

ln p(y | θ∗), lnπ(θ∗), and ln p(θ∗ | y) respectively to obtain lnm(y). Once lnm(y) is

established, we can compare models by comparing marginal likelihoods.

To compute DIC and marginal likelihoods, one needs to calculate the log-likelihood

ln(y | θ). For our proposed spot volatility models, we design an auxiliary particle filter

to calculate the log-likelihood. Note that the computational burden arises from the need
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to calculate the log-likelihood for each MCMC posterior sample of θ. To overcome this

computational burden, we implement this part of the algorithm in a parallel scheme using

OpenMP. The details of the corresponding algorithm are summarized in Appendix B. In the

simulation study, we will examine and compare the performance of these two methods.

3. Bayesian and MCMC Analysis

With the state-space model summarized in (10) and (11), we design an MCMC algorithm

to estimate all the parameters involved (especially the log spot volatility that is latent).

MCMC, as the leading modern Bayesian technique, is suitable for analyzing state-space

models. Before we formally discuss the MCMC steps, we first fix notations and then briefly

discuss the priors we will use. We collect all parameters that specify the state-space model

into θ, that is, θ =
(
ϕ, µ, σ2

e , κ, µη, σ
2
η, b
)
. Let h denote the sequence of hj, S denote the

sequence of the auxiliary latent state variables Sj, J denote all the jump indicators, and η

denote all the jump sizes. For simplicity, we let h̃ = h+ µ.4

To conduct the Bayesian analysis, we choose the following prior distributions. For

the persistence parameter ϕ and the parameter κ that determines the jump probability,

we assume Beta prior distributions. For µ and the parameter µη that denotes the jump

magnitudes, we assume normal prior distributions. The prior distributions of σ2
e and σ2

η

are chosen to be inverse-gamma. Finally, for the parameter b that determines the in-

traday diurnal pattern of volatility, we impose the truncated normal distribution as the

prior distribution. To sum up, we have following prior distributions: ϕ+1
2

∼ B (αϕ, βϕ),

µ ∼ N (µ̃, σ̃2), σ2
e ∼ IG (ασe , βσe), κ ∼ B (ακ, βκ),

(
µη, σ

2
η

)
∼ NIG

(
µ̃η, λση , αση , βση

)
,

4Given this specification, the transition dynamics from the j-th block to the (j + 1)-th block can be

alternatively expressed as

h̃j+1 = ϕh̃j + (1− ϕ)µ+ ej + Jjηj ,

which would be useful for the design of MCMC sampler; see Appendix A.1.
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b ∼ T N (µ̃b, σ̃
2
b , αb, βb), where B denotes the beta distribution, N denotes the normal dis-

tribution, IG denotes the inverse-gamma distribution, NIG denotes the normal-inverse-

gamma distribution, and T N denotes the truncated normal distribution, and

αϕ, βϕ, µ̃, σ̃
2, ασe , βσe , ακ, βκ, µ̃η, λση , αση , βση , µ̃b, σ̃

2
b , αb, βb

are all the corresponding hyperparameters. Given the prior specifications, the MCMC loop

is summarized as follows,

1. Initialize θ, S, J .

2. Sample h = {hj} | {ln (ĉn,j)} ,θ,S,J .

3. Sample S | {ln (ĉn,j)} ,h,θ,J .

4. Sample J | h,θ.

5. Sample η | h,θ,J .

6. Sample θ | {ln (ĉn,j)} ,h,S,J .

7. Go to 2.

Iterations over step 2-7 consists of a complete sweep of MCMC sampler. The detailed

description of the algorithm is presented in Appendix A. We implement the algorithm

using MATLAB and C++ with Eigen (http://eigen.tuxfamily.org).

With the extracted latent spot volatility and the corresponding parameters θ fixed at

the posterior mean of MCMC samples, we can further design an auxiliary particle filter to

forecast spot volatility. Since our analysis mainly builds in the high-frequency setting, we

focus on one-step-ahead forecasting. That is, we forecast cn,j+1 based on the established

spot volatility model and data ĉn,1:j := {ĉn,1, . . . , ĉn,j}, which is the fixed-k nonparametric

spot volatility estimation updated till the j-th local estimation window. More specifically,

one can use the predictive distribution, p (cn,j+1 | ĉn,1:j,θ) from the auxiliary particle filter
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to construct the one-step ahead spot volatility forecasting (posterior mean or posterior

mode of the predictive distribution) and the posterior forecasting confidence intervals.

4. Simulation Studies

4.1. Parameter estimation and extracting volatility

We simulate data (i.e., the (log) price process) from three different data generating processes

(DGPs) with the (log) volatility process being modeled as either Model 1, or Model 2, or

Model 3. The fixed-k inference theory and “volatility coupling” theory guarantees that as

long as the specification of the (log) price process follows Itô semimartingale process with

drift, diffusion and jump, the corresponding distribution theory for the nonparametric

estimates of spot volatility applies when the local estimation block is fixed. Let us denote

the three different DGPs by DGP 1, DGP 2, and DGP 3, respectively, and summarize

them as follows.

� DGP 1

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht,

dht = −κhhtdt+ σh

(
ρdWt +

√
1− ρ2dBt

)
.

� DGP 2

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht,

dht = −κhhtdt+ σh

(
ρdWt +

√
1− ρ2dBt

)
+ 1{t=t◦}Jtηt,

Jt ∼ Bern(κ),

ηt ∼ N
(
µη, σ

2
η

)
.
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� DGP 3

dXt = exp
(
h̃t/2

)
dWt,

h̃t = µh + ht + st,

dht = −κhhtdt+ σh

(
ρdWt +

√
1− ρ2dBt

)
+ 1{t=t◦}Jtηt,

Jt ∼ Bern(κ),

ηt ∼ N
(
µη, σ

2
η

)
,

st = 12(1− b)

(
t− ⌊t−⌋ − 1

2

)2

+ b.

In the description of DGPs above we introduce the notation t◦ such that t◦ ∈ [0, T ],

r◦ ∈ {1/M, 2/M, . . . ,M/M = 1}, and t◦ = ⌊t−⌋+r◦. Meanwhile, ⌊t−⌋ denotes the greatest

integer less than t and 1{·} refers to an indicator function. In the high-frequency setting, we

focus on the spot volatility within one day, that is, the intraday volatility in a trading day

of each month. Specifically, we assume that in each trading day there are 6.5 trading hours

from 09:30 to 16:00 and we consider one-minute returns. Therefore, there are 6.5×60 = 390

minutes and ∆n = 1/390 by construction. Besides, we specify µh = −6.2.5

Remark 2. Specifying E[WtBt] = ρ = 0 implies that in the state-space model that we

have established, our main target is to extract the underlying time-varying volatility process

and temporarily ignore the correlation between the Brownian motion that drives the (log)

price process and the Brownian motion that drives the spot volatility process. Although the

ignorance of correlation between error terms may lead to the misspecficiation of models, if

the goal is shifted towards forecasting while admitting model being misspecified, the leverage

effect issue may be of secondary concern.

Remark 3 (From DGP Dynamic to Block Dynamic). We discuss the dynamics of

SV autoregressive process using Model 1. In Model 1, if κh > 0, ht is a stationary

5µh = −6.2 is prior mean specified as in Stroud and Johannes (2014) for the mean of the logarithm of

volatility process, specifically, the equation (2) and appendix A of Stroud and Johannes (2014).
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Ornstein–Uhlenbeck process. At interval (t, t+ dt), its Euler scheme approximation is

ht+dt ≈ (1− κhdt)ht + σh(Bt+dt −Bt) := ϕhht + εt+dt.

Given the property of Brownian motion, εt+dt ∼ N (0, σ2
hdt). Data is generated from this

continuous setting. To apply nonparametric estimation of spot volatility, we need to select k

consecutive time intervals (dt ≡ ∆n
i ) to construct “local estimation window”. This implies

that we need to move from “observation” dynamics to “block” dynamics. If we simulate

data from the system above, we have

ht+kdt ≈ ϕhht+(k−1)dt + εt+kdt ≈ · · · ≈ ϕk
hht +

(
ϕk−1
h εt+dt + · · ·+ εt+kdt

)
.

Thus, the “block” dynamics is given by

hj+1 ≈ ϕk
hhj + ej+1, (18)

where ej+1 = ϕk−1
h εt+dt + · · ·+ εt+kdt. The variance of ej+1 = ϕk−1

h εt+dt + · · ·+ εt+kdt is

σ2
e =

σ2
hdt(1− ϕ2k

h )

1− ϕ2
h

.

Since εt, . . . , εt+kdt are i.i.d. and follow Gaussian distribution. Given the property of

Gaussian distribution, for finite fixed k, ej+1 follows Gaussian distribution. This justi-

fies the use of Gaussian distribution to model transition dynamic of volatility process in

Model 1-3. For instance, if dt := ∆n
i = 1/390, σh = 1.2, k = 5, and κh = 2, then

ϕh = 1− κhdt ≈ 0.9949, ϕk
h ≈ 0.9746 and

√
σ2
e =

√
σ2
hdt(1− ϕ2k

h )

1− ϕ2
h

≈ 0.1345.

By comparison, If dt := ∆n
i = 1/23400, σh = 1.2, k = 30, and κh = 20, then ϕh =

1− κhdt ≈ 0.9991, ϕk
h = 0.9747 and

√
σ2
e =

√
σ2
hdt(1− ϕ2k

h )

1− ϕ2
h

≈ 0.0424.
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Table 2: Posterior results from MCMC under the three DGPs

True Value Posterior Mean Posterior Std dev. 2.5% 97.5% Inefficiency

DGP 1

ϕ 0.9746 0.9467 0.0134 0.9175 0.9701 2.5385

σe 0.1345 0.1369 0.0159 0.1084 0.1715 3.5158

µ -6.2000 -6.2556 0.0666 -6.3881 -6.1217 1.0953

DGP 2

ϕ 0.9746 0.9598 0.0093 0.9404 0.9768 1.9338

σe 0.1345 0.1668 0.0157 0.1378 0.1998 3.3181

µ -6.2000 -6.1938 0.1150 -6.4283 -5.9740 1.0272

κ 0.0047 0.0060 0.0019 0.0029 0.0101 1.1570

ση 1.2000 1.1112 0.3587 0.6621 2.0415 1.3829

µη 0.8000 0.7518 0.2852 0.1993 1.3142 1.1296

DGP 3

ϕ 0.9746 0.9567 0.0104 0.9350 0.9759 1.8683

σe 0.1345 0.1678 0.0162 0.1374 0.2006 3.1977

µ -6.2000 -6.1454 0.1056 -6.3594 -5.9430 1.0180

κ 0.0047 0.0056 0.0018 0.0028 0.0098 0.7970

ση 1.2000 1.0186 0.3707 0.5858 1.8983 1.1014

µη 0.8000 0.7520 0.1508 0.4578 1.0527 0.7298

b 0.7000 0.7561 0.0497 0.6582 0.8532 1.3300

In Table 2, we summarize the posterior estimation results for various DGPs. For DGP

3, we set b = 0.7. In each MCMC procedure, we run 110, 000 iterations, discarding the

first 10, 000 draws. The 2.5% and 97.5% columns in Table 2 refer to the 2.5% and 97.5%

percentiles corresponding to the MCMC outputs. It is obvious that the credible intervals

generally cover the true values of the corresponding parameters. The last column of Table 2

reports the inefficiency factors, based on 100 lags of the autocorrelation functions, indicating

our MCMC algorithm is very efficient. In addition, we plot the MCMC samples, the

corresponding posterior densities, and their sample autocorrelation functions in DGP 1
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to DGP 3. Figure C.1 to Figure C.3, respectively. All the plots suggest that our MCMC

samples converge well and our proposed method is effective.

Our method allows us to extract spot volatility by estimating E
(
exp(h̃t/2)|FT

)
. This

is the smoothed estimate of spot volatility. To see the effectiveness of our spot volatility

estimate, in Figure 3 we plot the fixed-k nonparametric estimate of the spot volatility (the

blue solid line), the true spot volatility (the red solid line), and the smoothed estimate of

spot volatility (the cyan dashed line). It is clear the smoothed estimate of spot volatility

is very close to the true spot volatility and much smoother than the fixed-k nonparametric

estimate of the spot volatility.

4.2. Model selection

In this part, we discuss the effectiveness of using DIC and marginal likelihoods for model

comparison and selection. As we have discussed previously, one should expect that the

marginal likelihood method chooses the correct model. However, model selection based on

DIC does not guarantee the selection of the true model, since DIC aims to select a model

that minimizes the KL “distance” between the DGP and the plug-in predictive distribution

asymptotically.

We consider DGP 1, DGP 2, and DGP 3 that match Model 1, Model 2, and

Model 3. For DGP 3, two values for b are considered, b = 0.7 and b = 0.3. Specifically,

we focus on 1-minute returns over daily trading hours from 09:30 to 16:00, assuming 22

trading days within one month, and the local estimation window size is fixed at k = 5.

Given this specification, we have T = 22, ∆n = 1/390, and accordingly, a total of mn =

T/(k∆n) = 1716 local nonparametric estimation blocks, which serve as the observations

in the observation equation of the state-space model (More detailed descriptions for this

scheme in section 2.3). For each DGP, we simulate a sample path, we then estimate

Model 1, Model 2, and Model 3 by the MCMC algorithm and calculate DIC and
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(a) DGP 1
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(c) DGP 3

Figure 3: In each figure we plot the fixed-k nonparametric estimate of the spot volatility

(the blue solid line), the true spot volatility (the red solid line), and the smoothed estimate

of spot volatility (the cyan dashed line).
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marginal likelihood for each model. Finally, we repeat the exercise for 100 times and then

calculate the averaged DIC value and the average log marginal likelihood value across 100

replications. Note that DIC prefers a model with a smaller value while marginal likelihood

prefer a model with a larger value.

Table 3 reports the averaged DIC value (the left panel) and the average log marginal

likelihood value (the right panel).6 For each DGP, the smallest DIC value and the largest

marginal likelihood value are highlighted in boldface.

We first examine the performance of DIC for model comparison. It is known in the

literature, a model with the lowest DIC does not necessarily match the DGP that generates

the data. One can see from Table 3 that this is indeed the case. Although under DGP 1,

DGP 2, DGP 3′ the averaged DIC value is the smallest for the true model, it is not the

smallest for the true model under DGP 3. In this case, Model 1 has the smallest DIC

value on average, followed by Model 2, while the true model, Model 3, has the largest

DIC value on average. With a large value of b, in DGP3, the diurnal pattern is weak.

The diurnal pattern attenuates as b draws closer to 1. This study suggests that DIC has

a better chance to select correct model when the diurnal pattern is strong than when it is

weak.

We then examine the performance of marginal likelihood for model comparison. How-

ever, for each DGP, it is expected that marginal likelihood would effectively select the

correct model asymptotically. This is indeed reflected by the average log marginal likeli-

hood values shown in Table 3. In each column of the right panel of Table 3, the model

with the highest average log marginal likelihood matches the DGP.

Finally, we check the performance of the particle filter for generating forecasts of spot

volatility. Figure 4 presents the nonparametric estimate of the spot volatility (the blue solid

6We conduct this simulation study on a Linux machine equipped with AMD Ryzen 9950X processor

with 16 cores and clock speed of 5.20GHz. A similar Monte Carlo simulation design can also be seen in Li,

Yu, and Zeng (2020).
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Table 3: Model selection of alternative models by DIC and marginal likelihood under the

three DGPs

DGP 1 DGP 2 DGP 3 DGP3′ DGP 1 DGP 2 DGP 3 DGP3′

(b = 0.7) (b = 0.3) (b = 0.7) (b = 0.3)

DIC Marginal Likelihood

Model 1 3852.5 3937.3 3975.3 4072.8 -1923.6 -1960.5 -1985.9 -2035.6

Model 2 4222.3 3945.6 3977.4 4064.9 -1928.0 -1950.6 -1977.8 -2032.4

Model 3 4011.1 3917.8 3995.0 3972.3 -1930.7 -1953.4 -1959.6 -1960.4

line), the smoothed volatility estimate (the cyan dashed line), the true spot volatility (the

red solid line), and the one-step-ahead forecast of volatility from the particle filter (the green

solid line) based on simulated data. The gray shaded area refers to the posterior credible

intervals for forecasted spot volatility. To demonstrate the performance of our methods

for generating forecasts of intraday spot volatility, we simulate ultra-high-frequency tick-

by-tick returns, i.e. ∆n = 1/(6.5 × 60 × 60) = 1/23400. We specify the local estimation

window size as k = 5 and k = 10, which correspond to 5-seconds intervals and 10-seconds

intervals, respectively. This means that, for generating forecasts of intraday spot volatility,

the one-step ahead forecast refers to the next 5-second interval for k = 5 and the next 10-

second interval for k = 10. Meanwhile, we split the trading time in each trading day (09:30

to 16:00, 23400 discrete intervals in total) into two parts and use data collected in the first

70% to estimate model parameters using MCMC. Then we fix the model parameters at

the posterior mean and apply particle filter over the remained 30% time to the end of the

trading day.

Remark 4. It is possible to consider ∆n = 1/390 as in the foregoing discussions. However,

local nonparametric estimation based on data would be limited with ∆n = 1/390 in each

trading day. For instance, with ∆n = 1/390 and k = 5, one can obtain 390/5 = 78

local nonparametric estimations of spot volatility. Therefore, it is advisable to use data

from several trading days to first estimate the model parameters, and then perform out-

27



of-sample forecasting. Theoretically, one can follow an expanding window scheme and re-

estimate model parameters when new return data become available, but this would increase

the computational burden.
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Figure 4: This figure presents the nonparametric estimate of the spot volatility (the blue

solid line), the smoothed volatility estimate (the cyan dashed line), the true spot volatility

(the red solid line), and the one-step-ahead forecast of volatility from the particle filter

(the green solid line) based on simulated data. The gray shaded area refers to the posterior

credible intervals for forecasted spot volatility.

5. Empirical Applications

The Bayesian approach we have proposed in this paper is readily applicable to investigate

the intraday volatility pattern of the high-frequency factors in Aleti and Bollerslev (2024).

Since Fama and French (1992) and Fama and French (1993), there has been a substantial

amount of literature discussing factors for modeling equity returns, as they offer a parsimo-

nious statistical description of the returns’ cross-sectional dependence structure. Generally

speaking, traded factors, broadly discussed in empirical finance literature, are mainly about
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characteristic-sorted portfolios, where portfolios of assets are constructed based on cross-

sectional characteristics of assets. For instance, the size factor in Fama and French (1992)

is constructed by monthly sorting observed returns based on market capitalization, divid-

ing assets into portfolios according to this characteristic, and then taking the difference in

average returns across these portfolios. In the high-frequency setting, the high-frequency

factors or high-frequency factor portfolios are still constructed using conventional methods

(such as tercile sorting with monthly rebalancing and value weighting), but using price

data, sampled at a 1-minute frequency, to construct high-frequency returns. This is in line

with Aı̈t-Sahalia, Jacod, and Xiu (2024), which advocates the use high-frequency data to

re-investigate the conventional asset pricing topics. In Aleti (2023) and Aleti and Bollerslev

(2024), the authors construct a novel dataset of high-frequency six factors in Fama and

French (2015) based on common stocks on NYSE/NASDAQ/NYSEMKT. These factors

are Mkt (market risk premium), SMB (size factor), HML (value factor), RMW (profitabil-

ity factor), CMA (investment factor), and UMD (momentum factor). All these factors are

constructed using methodologies that are faithful to the conventional papers, while utiliz-

ing high-frequency price data from the NYSE Trade and Quote Database (TAQ) through

WRDS. This dataset contains 1-minute returns of these six factors for all common stocks

listed on the three primary exchanges (NYSE, NASDAQ, NYSEMKT) from 09:30 to 16:00

each trading day, spanning from January 1996 to December 2020. In this section, we apply

the Bayesian spot volatility modeling method to examine how the volatility patterns vary

across these six high-frequency factors and which model specifications best fit or explain

the data.
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Table 4

DIC

Mkt SMB HML RMW CMA UMD

September, 1999

Model 1 5043.0 4888.3 3971.6 3781.4 3835.1 3659.3

Model 2 5062.0 4901.0 3974.9 3782.6 3842.6 3663.3

Model 3 5010.2 4852.6 3909.1 3708.6 3740.5 3545.3

November, 2008

Model 1 3702.9 3843.8 3656.6 3814.4 3882.3 3802.5

Model 2 21771.0 4018.6 3642.5 3800.3 3878.2 3781.1

Model 3 83919.0 56629.0 9766.5 12164.0 3822.3 5713.9

March, 2016

Model 1 4397.7 4330.6 4546.6 4541.7 4458.0 4910.8

Model 2 4358.2 4309.0 4491.2 4485.7 4411.4 4877.2

Model 3 4340.5 4259.2 4505.2 4478.8 4386.9 4885.4

May, 2020

Model 1 4257.0 4136.2 4288.7 4072.6 3902.2 4327.9

Model 2 4247.0 4133.1 4224.8 4025.3 3867.6 4242.2

Model 3 4197.6 4068.0 4231.4 3985.9 3819.3 4252.4

We calculate DIC and model marginal likelihood for each of these high-frequency factors

in Table 4 and Table 5, respectively. Each of these two tables has four panels collecting

results for four selected periods. The results in these two tables are rich for interpreta-

tion. First, since DIC targets model fitting performance while balancing model complexity,

Table 4 shows that, for the Mkt and SMB factors, the spot volatility model specification

with better fitting performance is not necessarily the most comprehensive one (Model 3).

In comparison to September 1999 and the other two periods (March 2016 and May 2020),

DIC favors a simpler specification (Model 1 with a smaller DIC) for the spot volatility

dynamics. For the HML factor, DIC favors Model 2, which does not directly model the

polynomial intraday diurnal pattern in November 2008, March 2016, and May 2020, rather
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Table 5

Model Log-marginal Likelihood

Mkt SMB HML RMW CMA UMD

September, 1999

Model 1 -2647.8 -2451.6 -1985.3 -1887.3 -1915.8 -1827.7

Model 2 -2649.6 -2450.9 -1986.9 -1889.7 -1919.0 -1832.0

Model 3 -2590.5 -2428.6 -1955.2 -1855.8 -1872.2 -1775.0

November, 2008

Model 1 -1831.8 -1934.1 -1820.3 -1899.1 -1943.9 -1900.3

Model 2 -1773.9 -1892.6 -1819.3 -1904.1 -1940.9 -1897.1

Model 3 -1720.3 -1818.4 -1794.6 -1859.3 -1909.8 -1867.2

March, 2016

Model 1 -2197.8 -2162.1 -2281.7 -2274.6 -2236.9 -2462.3

Model 2 -2178.8 -2146.8 -2250.9 -2247.7 -2207.5 -2432.2

Model 3 -2170.2 -2135.0 -2255.1 -2251.6 -2202.9 -2443.9

May, 2020

Model 1 -2128.5 -2070.9 -2139.2 -2037.2 -1957.0 -2166.3

Model 2 -2131.6 -2061.1 -2099.1 -2019.1 -1928.1 -2116.5

Model 3 -2101.8 -2036.4 -2109.2 -1998.5 -1911.0 -2130.2

than the nested Model 3 as seen in September 1999. Similarly, for the RMW factor, DIC

suggests the nested model specification (Model 3) during the three periods (September

1999, March 2016, and May 2020), while in November 2008, Model 2, as a simpler model

specification, is preferred.

Second, as we previously demonstrated through simulation studies, model log-marginal

likelihood targets the model with the best interpretation. Accordingly, Table 5 implies

that the intraday volatility patterns of these six high-frequency factors are ubiquitous, but

this is not necessarily always the case. There are a few exceptions in which, by comparing

model log-marginal likelihoods, a more parsimonious model that does not directly model

the intraday volatility pattern is selected. For instance, as shown in Table 5, Model 2,
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rather than Model 3, matches the intraday volatility patterns of the HML, RMW, and

UMD factors better in terms of interpretability. Finally, the results in Table 5 also directly

imply that the diurnal intraday volatility patterns of high-frequency factors vary over time

and differ across factors.

6. Conclusion

A key contribution of Bollerslev, Li, and Liao (2021) is the development of fixed-k infer-

ence theory for time-varying spot volatility. While fixed-k inference avoids the need for an

expanding local estimation window as the sample size grows and provide a “finite sample”

inferential procedure, it introduces inconsistency and noise in nonparametric spot volatility

estimation. To mitigate these limitations, we propose a Bayesian framework with multiple

model specifications for spot volatility in high-frequency data, grounded in fixed-k the-

ory. All models are formulated as nonlinear non-Gaussian state-space systems, enabling

Bayesian estimation, volatility extraction, and model comparison.

Our approach offers two major advantages. First, it significantly reduces the noise in-

herent in fixed-k spot volatility estimation in high-frequency settings. Second, the Bayesian

framework naturally supports model estimation, volatility extraction, model selection, and

comparison across competing specifications. Simulations demonstrate the effectiveness of

our methods: the designed MCMC and particle filter algorithms accurately recover latent

spot volatility, while model performance can be assessed via DIC or marginal likelihoods

— depending on whether the focus is volatility fitting or pattern explanation.

Building on this theoretical and simulation-based foundation, we apply our Bayesian

spot volatility framework to a novel high-frequency factors dataset, uncovering distinct

volatility patterns across factors and over time. Empirically, the most interpretable specifi-

cation typically includes volatility jumps and an intraday polynomial pattern. However, for

pure fitting accuracy, simpler models occasionally outperform. Our framework is readily
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extensible to other settings requiring high-frequency volatility analysis, though we defer

such empirical applications to future work.
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Appendix

A. MCMC Procedure for Stochastic Volatility Model

with Jumps

Since we are doing Bayesian analysis using Gibbs Sampling, we collect local nonparametric

estimation of volatility into data and treat all the remained components in the model as

parameters in a generic sense.

{ln(ĉn,j)}mn

j=1 : data, for instance, nonparametric estimation of spot volatility

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{ln(cn,j)}mn

j=1 := {hj}mn

j=1 : parameters, latent spot volatility

{
ϕ, µ, σ2

e

}
: parameters, volatility parameters

b : parameters, intraday pattern parameters

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

{Jj}mn

j=1 : parameters, jump component indicator

{ηj}mn

j=1 : parameters, jump component magnitude

{
κ, µη, σ

2
η

}
: parameters, jump parameters

A.1. Sampling jump components and jump parameters

� Sampling {Jj}mn

j=1. This sampling step is conditional on data {ĉn,j}mn

j=1 and updated{
h̃j

}mn

j=1
, {ϕ, µ, σ2

e}, {ηj}
mn

j=1 and
{
κ, µη, σ

2
η

}
. Define

ξj = h̃j+1 − ϕh̃j = (1− ϕ)µ+ Jjηj + ej,
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which implies that

ξj | Jj=1 = (1− ϕ)µ+ ηj + ej,

ξj | Jj=0 = (1− ϕ)µ+ ej.

Since ηj and ej are assumed to be normally distributed independently with each other

such that ηj ∼ N (µη, σ
2
η) and ej ∼ N (0, σ2

e), this further implies that

ξj | Jj=1 ∼ N
(
(1− ϕ)µ+ µη, σ

2
η + σ2

e

)
,

ξj | Jj=0 ∼ N
(
(1− ϕ)µ, σ2

e

)
.

With κ updated within Gibbs sampling loop, updating {Jj}mn

j=1 as follows

P {Jj = 1 | rest} =
κfN

(
ξj; (1− ϕ)µ+ µη, σ

2
η + σ2

e

)
(1− κ)fN (ξj; (1− ϕ)µ, σ2

e) + κfN
(
ξj; (1− ϕ)µ+ µη, σ2

η + σ2
e

) .
� Sampling {ηj}mn

j=1. This sampling step is conditional on data {ĉn,j}mn

j=1, updated{
h̃j

}mn

j=1
, {ϕ, µ, σ2

e}, {Jj}
mn

j=1, and
{
κ, µη, σ

2
η

}
. Given the dynamic transition system

stated above, if Jj = 1, then

(ln(ĉn,j) + ln k) | h̃j ∼ lnχ2
k or GMM approximation

h̃j+1 = µ+ ϕ(h̃j − µ) + ηj + ej

where ηj is regarded as parameter with prior distribution such that ηj ∼ N
(
µη, σ

2
η

)
,

therefore posterior distribution of ηj conditional on all the rest is based on the fol-

lowing joint likelihood function

fN
(
ηj;µη, σ

2
η

)
· fN

(
h̃j+1 − ϕh̃j − (1− ϕ)µ; ηj, σ

2
e

)
· flnχ2

k

(
ln(ĉn,j); h̃j

)
,

that is

1√
2πση

exp

{
−(ηj − µη)

2

2σ2
η

}
×

1√
2πσe

exp

−

(
h̃j+1 − ϕh̃j − (1− ϕ)µ− ηj

)2
2σ2

e

× flnχ2
k

(
ln(ĉn,j); h̃j

)
.
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This further implies that

ηj | rest ∝ exp

{
−
η2j − 2ηjµη + µ2

η

2σ2
η

−

(
h̃j+1 − ϕh̃j − (1− ϕ)µ

)2
− 2

(
h̃j+1 − ϕh̃j − (1− ϕ)µ

)
ηj + η2j

2σ2
e


∝ exp

−1

2

(
1

σ2
η

+
1

σ2
e

)
︸ ︷︷ ︸

coef a

η2j +

(
µη

σ2
η

+
h̃j+1 − ϕh̃j − (1− ϕ)µ

σ2
e

)
︸ ︷︷ ︸

coef b

ηj


∝ exp

{
− 1

2(
√

1/coef a)2

(
ηj −

coef b

coef a

)2
}
.

Therefore posterior distribution of ηj | rest is normally distributed with mean equal

to (
1

σ2
η

+
1

σ2
e

)−1
(
µη

σ2
η

+
h̃j+1 − ϕh̃j − (1− ϕ)µ

σ2
e

)
,

and variance equal to (
1

σ2
η

+
1

σ2
e

)−1

.

� Sampling κ. This sampling step is conditional on data {ĉn,j}mn

j=1, updated
{
h̃j

}mn

j=1
,

{ϕ, µ, σ2
e}, {Jj}

mn

j=1, {ηj}
mn

j=1 and
{
κ, µη, σ

2
η

}
. Since {Jj}mn

j=1 follows Bernoulli distribu-

tion, Bern(κ), and by specification we as econometricians have prior knowledge on

κ such that κ follows Beta distribution B (ακ, βκ), then κ is sampled from posterior

distribution conditional on {Jj}mn

j=1. Actually, {Jj}mn
j=1 as binary random variables,

realizations of the sum of {Jj}mn
j=1 lie in between 0 and mn and we denote it as k.

Given that

L(k | κ) := P

(
mn∑
j=1

Jj = k | mn, κ

)
=

 mn

k

κk(1− κ)mn−k,
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and the probability density function of Beta distribution 1

π (κ | ακ, βκ) =
κακ−1(1− κ)βκ−1

B (ακ, βκ)
,

then the joint likelihood of k and κ is given as follows

L(k | κ) · π (κ | ακ, βκ) .

By integrating out κ from this joint likelihood as follows yields

f (k | mn, ακ, βκ) =

∫ 1

0

L(k | κ) · π ((κ | ακ, βκ)) dκ

=

 mn

k

 1

B (ακ, βκ)

∫ 1

0

κk+ακ−1(1− κ)mn−k+βκ−1dκ

=

 mn

k

 B (k + ακ,mn − k + βκ)

B (ακ, βκ)

=

 mn

k

 B
(∑mn

j=1 Jj + ακ,mn −
∑mn

j=1 Jj + βκ

)
B (ακ, βκ)

.

Given the property of Beta function and Gamma function, it is easy to show that

conditional on realizations of {Jj}mn
j=1, posterior distribution of κ follows Beta distri-

bution as B
(∑mn

j=1 Jj + ακ,mn −
∑mn

j=1 Jj + βκ

)
.

� Sampling σ2
η and µη. Given the prior structure

(
µη, σ

2
η

)
∼ NIG

(
µ̃η, λση , αση , βση

)
and for a given µη and σ2

η, ηj
i.i.d.∼ N (µη, σ

2
η). Then, µη, σ

2
η | {ηj}mn

j=1 , {Jj}
mn

j=1 follows

1B (ακ, βκ) denotes beta function defined as the Euler integral of the first kind,

B (ακ, βκ) =

∫ 1

0

tακ−1 (1− t)
βκ−1

dt.
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normal-inverse-gamma distribution NIG
(
µ̃∗
η, λ

∗
ση
, α∗

ση
, β∗

ση

)
with

µ̃∗
η =

(
mn∑
j=1

Jjηj + µ̃ηλση

)/(
λση +

mn∑
j=1

Jj

)

λ∗
ση

= λση +
mn∑
j=1

Jj

α∗
ση

=
mn∑
j=1

Jj/2 + αση

β∗
ση

=

−( mn∑
j=1

ηj + µ̃ηλση

)2/(
λση +

mn∑
j=1

Jj

)
+

mn∑
j=1

(Jjηj)
2 + λση µ̃

2
η

/2 + βση .

� Sampling b. Since we have assumed that b follows a prior distribution such that

b ∼ T N (µ̃b, σ̃
2
b , αb, βb) with T N denoting a truncated normal distribution, we can

show that the posterior sampling of b follows a conjugate scheme conditional on data

{ĉn,j}mn

j=1, latent variables and other parameters.

A.2. Sampling volatility parameters and latent spot volatilities

� Sampling
{
h̃j

}mn

j=1
. This sampling step is conditional on data {ln(ĉn,j)}mn

j=1 and

updated {ϕ, µ, σ2
e}, {Jj}

mn

j=1, {ηj}
mn

j=1, and
{
κ, µη, σ

2
η

}
. Given the approximate lin-

ear Gaussian state-space model, Kalman filter and forward filtering and backward

smoothing (FFBS) algorithm (Giordani, Pitt, and Kohn, 2011) applies for sampling{
h̃j

}mn

j=1
in this setting.

� Sampling µ. This sampling step is conditional on data {ln(ĉn,j)}mn

j=1, updated {ϕ, σ2
e},{

h̃j

}mn

j=1
, {Jj}mn

j=1, {ηj}
mn

j=1 and
{
κ, µη, σ

2
η

}
. Conditional on updated {Jj}mn

j=1, {ηj}
mn

j=1,

and
{
h̃j

}mn

j=1
updated within Gibbs loop, sampling µ is straightforward as ej = h̃j+1−

ϕh̃j − (1− ϕ)µ− Jjηj is normally distributed with zero mean and variance equal to
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σ2
e . Recall the functional form of joint normal density function as follows

mn∏
j=1

fN
(
ξj − Jjηj; (1− ϕ)µ, σ2

e

)

=
mn∏
j=1

1√
2πσe

exp

{
− [ξj − Jjηj − (1− ϕ)µ]2

2σ2
e

}
.

As we have specified the prior π(µ) ∼ N (µ̃, σ̃2), then the joint likelihood is given as

follows

fN(µ; µ̃, σ̃
2) ·

mn−1∏
j=1

fN
(
ξj − Jjηj; (1− ϕ)µ, σ2

e

)

=
1√
2πσ̃

[
1√
2πσe

]mn−1

exp

{
− 1

2σ̃2
(µ− µ̃)2 − 1

2σ2
e

mn−1∑
j=1

[ξj − Jjηj − (1− ϕ)µ]2
}

∝ exp

{
− 1

2σ̃2
(µ− µ̃)2 − 1

2σ2
e

mn−1∑
j=1

[ξj − Jjηj − (1− ϕ)µ]2
}
.

Again by applying the method of completing squares, we can show that conjugate

posterior distribution of µ is Gaussian distribution with mean equal to[
1

σ̃2
+

(mn − 1)(1− ϕ)2

σ2
e

]−1
[
µ̃

σ̃2
+

1− ϕ

σ2
e

mn−1∑
j=1

(ξj − Jjηj)

]
,

and variance equal to [
1

σ̃2
+

(mn − 1)(1− ϕ)2

σ2
e

]−1

.

� Sampling σ2
e . This sampling step is conditional on data {ĉn,j}mn

j=1 and updated {ϕ, µ},{
h̃j

}mn

j=1
, {Jj}mn

j=1, {ηj}
mn

j=1 and
{
κ, µη, σ

2
η

}
. This sampling step is based on the fol-

lowing joint likelihood function assuming that σ2
e has inverse-gamma prior equipped
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with shape parameter ασe and scale parameter βσe ,

σ2
e | rest ∝

(
σ2
e

)−ασe−1
exp

{
−βσe

σ2
e

}
×
(
σ2
e

)−(mn−1)/2×

exp

{
− 1

2σ2
e

mn∑
j=2

[ξj − (1− ϕ)µ− Jjηj]
2

}

∝
(
σ2
e

)−ασe−
mn−1

2
−1

exp

{
−

(
βσe +

1

2

mn−1∑
j=1

[ξj − (1− ϕ)µ− Jjηj]
2

)/
σ2
e

}
(A.1)

which suggest that σ2
e | rest ∼ IG

(
ασe +

mn−1
2

, βσe +
1
2

∑mn−1
j=1 [ξj − (1− ϕ)µ− Jjηj]

2
)
.

� Sampling ϕ. This sampling step is conditional on data {ĉn,j}mn

j=1 and updated {µ, σ2
e},{

h̃j

}mn

j=1
, {Jj}mn

j=1, {ηj}
mn

j=1 and
{
κ, µη, σ

2
η

}
. If prior imposed on ϕ is

π(ϕ) ∝
{
(1 + ϕ)

2

}αϕ−1{
(1− ϕ)

2

}βϕ−1

,

then full conditional density of ϕ is proportional to

π (ϕ)
mn∏
j=1

1√
2πσe

exp

{
− [ξj − Jjηj − (1− ϕ)µ]2

2σ2
e

}
.

Recall that

exp

−

∑mn

j=1

[
h̃j+1 − µ− Jjηj − ϕ

(
h̃j − µ

)]2
2σ2

e


∝ exp

−

∑mn

j=1

(
h̃j − µ

)2
2σ2

e

ϕ2 +

∑mn

j=1

(
h̃j+1 − µ− Jjηj

)(
h̃j − µ

)
σ2
e

ϕ


∝ exp

{
− 1

2Vϕ

(
ϕ− ϕ̂

)2}
,

where

Vϕ =
σ2
e∑mn

j=1

(
h̃j − µ

)2 ,
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and

ϕ̂ =

∑mn

j=1

(
h̃j+1 − µ− Jjηj

)(
h̃j − µ

)
∑mn

j=1

(
h̃j − µ

)2 .

This suggests that we can useN
(
ϕ̂, Vϕ

)
as proposal distribution to construct Metropolis-

Hastings algorithm for sampling ϕ. Specifically, within the loop of Gibbs Sampling,

given the current value of ϕ(q−1) at the q-th iteration, sampling ϕ′ from N
(
ϕ̂, Vϕ

)
.

Since the associated acceptance-rejection ratio is constructed as

min


1,

π (ϕ′) f

({
h̃j

}mn

j=2
| {Jj}mn

j=2 , {ηj}
mn

j=2 , {ϕ
′, µ, σ2

e} ,
{
κ, µη, σ

2
η

})
π (ϕ(q−1)) f

({
h̃j

}mn

j=2
| {Jj}mn

j=2 , {ηj}
mn

j=2 , {ϕ(q−1), µ, σ2
e} ,
{
κ, µη, σ2

η

})
︸ ︷︷ ︸

part I

×
fN

(
ϕ(q−1); ϕ̂, Vϕ

)
fN

(
ϕ′; ϕ̂, Vϕ

)
︸ ︷︷ ︸

part II


then fN

(
ϕ(q−1); ϕ̂, Vϕ

)
and fN

(
ϕ′; ϕ̂, Vϕ

)
would be cancelled with exp

{
− 1

2Vϕ

(
ϕ(q−1) − ϕ̂

)2}
contained in the denominator of part I and exp

{
− 1

2Vϕ

(
ϕ′ − ϕ̂

)2}
contained in

the numerator of part I respectively. This suggests that the proposed value ϕ′ is

accepted as ϕ(q) with probability equal to min
{
1, exp

{
g(ϕ′)− g(ϕ(q−1))

}}
where

g (ϕ) = log π (ϕ) . If the proposed value is rejected, set ϕ(q) equal to ϕ(q−1).

B. Particle Filter for Calculating Log-likelihood

We follow Doucet and Johansen (2009), Malik and Pitt (2011), and Stroud and Johannes

(2014) by constructing a particle filter algorithm to approximate the log-likelihood function

used for calculating DIC, model log-marginal likelihood, and the marginal predictive distri-

bution forecasting. Our particle filter algorithm is summarized as follows. Let {ln(ĉn,1:j)}
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denote the local nonparametric estimation of spot volatility from Tn,1 to Tn,j. We denote

the latent state variables as h̃j = hj +µ. For a fixed value at θ, the likelihood function can

be approximated using auxiliary particle filter (APF) as follows

L
(
{ln(ĉn,j)}mn

j=1 | θ
)
=

mn∏
j=1

(
1

N

N∑
i=1

π
(i)
j

)(
1

N

N∑
i=1

w
(i)
j

)
, (B.1)

where N denotes the number of particles used in APF. The generic steps for obtaining{
π
(i)
j

}
and

{
w

(i)
j

}
are summarized as follows:

1. Start with sample h̃
(i)
j−1 ∼ p

(
h̃j−1 | ln(ĉn,1:j−1)

)
. For the initial state h̃

(i)
0 , we sample

h̃
(i)
0 from initial stationary distribution following mixture normal such that

h̃
(i)
0 ∼ N

(
µ+

κµη

1− ϕ
,
κ
(
σ2
e + σ2

η + µ2
η

)
+ (1− κ)σ2

e − κ2µ2
η

1− ϕ2

)
,

by noting that

ej + Jjηj ∼ κN
(
µη, σ

2
e + σ2

η

)
+ (1− κ)N

(
0, σ2

e

)
,

and

E (ej + ηj) = κµη,

Var (ej + ηj) = κ
(
σ2
e + σ2

η + µ2
η

)
+ (1− κ)σ2

e − κ2µ2
η.

Accordingly,

E
(
h̃0

)
= µ+

κµη

1− ϕ
,

Var
(
h̃0

)
=

κ
(
σ2
e + σ2

η + µ2
η

)
+ (1− κ)σ2

e − κ2µ2
η

1− ϕ2
.

2. Compute π
(i)
j ∝ p

(
ln(ĉn,j) | ˆ̃h(i)

j

)
, where

ˆ̃h
(i)
j = E

(
h̃j | h̃(i)

j−1, ln(ĉn,1:j−1)
)
.
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More specifically, note that

ˆ̃h
(i)
j = E

(
h̃j | h̃(i)

j−1, ln(ĉn,1:j−1)
)

= ϕh̃
(i)
j−1 + (1− ϕ)µ+ E [Jj−1ηj−1] + E [ej−1]

= ϕh̃
(i)
j−1 + (1− ϕ)µ+ κµη.

3. With the results calculated in step 2, we then generate

ki ∼ M
(
π
(1)
j , . . . , π

(N)
j

)
where M(·) refers to the generic multinomial distribution specified by

{
π
(i)
j

}
.

4. Generate h̃̃
(i)

j ∼ p
(
h̃j | h̃(ki)

j−1, ln(ĉn,1:j−1)
)
. This is a mixture normal distribution such

that if Jj−1 = 1, N
(
(1− ϕ)µ+ µη, σ

2
η + σ2

e

)
; if Jj−1 = 0, N ((1− ϕ)µ, σ2

e). There-

fore,

h̃̃
(i)

j | h̃(ki)
j−1, ln(ĉn,1:j−1)

∼

 N
(
ϕh̃j−1 + (1− ϕ)µ+ ρσeεj−1 + µη, σ

2
η + σ2

e(1− ρ2)
)

if Jj−1 = 1,

N
(
ϕh̃j−1 + ρσeεj−1 + (1− ϕ)µ, σ2

e(1− ρ2)
)

if Jj−1 = 0.

Hence,

h̃̃
(i)

j | h̃(ki)
j−1, ln(ĉn,1:j−1) ∼ κN

(
ϕh̃j−1 + (1− ϕ)µ+ ρσeεj−1 + µη, σ

2
η + σ2

e(1− ρ2)
)

+ (1− κ)N
(
ϕh̃j−1 + ρσeεj−1 + (1− ϕ)µ, σ2

e(1− ρ2)
)
.

5. Compute w
(i)
j ∝ p

(
ln(ĉn,j) | h̃̃

(i)

j

)
/π

(ki)
j .

6. Generate

ιi ∼ M
(
w

(1)
j , . . . , w

(N)
j

)
and set h̃

(i)
j = h̃̃

(ιi)
j .
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C. Additional Plots

Figure C.1: Posterior densities, MCMC samples, and autocorrelation functions for DGP

1
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Figure C.2: Posterior densities, MCMC samples, and autocorrelation functions for DGP

2
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Figure C.3: Posterior densities, MCMC samples, and autocorrelation functions for DGP

3
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