Hints

I provide some detailed derivations for the distributions we have discussed in class. All the following discussions remain within the finite sample setting, i.e. $n < \infty$.

We know that under the classical assumptions,

$$\hat{\boldsymbol{\beta}} \mid \boldsymbol{X} \sim N \left[\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \right],$$

therefore under H_0 ,

$$\frac{c'\boldsymbol{\beta}-r}{\sqrt{\sigma^2 c'\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}c}} \sim N(0,1).$$

By replacing σ^2 with sample estimation

$$\hat{\sigma}^2 = \frac{\boldsymbol{e'e}}{n-k-1}$$

then

$$T_n = \frac{c'\boldsymbol{\beta} - r}{\sqrt{\hat{\sigma}^2 c' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} c}} \sim t(n-k-1).$$

To prove this result we need following lemma and theorem from *Multivariate Analysis*.

Lemma 1

- (i) If $\boldsymbol{u} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is nonsingular $n \times n$ matrix, then $\boldsymbol{u}' \boldsymbol{\Sigma} \boldsymbol{u} \sim \chi^2(n)$.
- (ii) If $\boldsymbol{u} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n)$ and A is $n \times n$ matrix, then $\boldsymbol{u}' A \boldsymbol{u} / \sigma^2 \sim \chi^2(\operatorname{rank}(A))$.
- (iii) If $\mathbf{u} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, A is a $n \times n$ projection matrix, and $A'B = \mathbf{0}$, then $\mathbf{u}'A\mathbf{u}$ and $B'\mathbf{u}$ are independent.
- (iv) If $\mathbf{u} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, A and B are both symmetric, then $\mathbf{u}'A\mathbf{u}$ and $\mathbf{u}'B\mathbf{u}$ are independent if and only if $AB = \mathbf{0}$.

Besides, if $\boldsymbol{u} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n)$ and A is symmetric, then $\boldsymbol{u}' A \boldsymbol{u} / \sigma^2 \sim \chi^2(\operatorname{rank}(A))$ if and only if A is idempotent.

The following theorem states the sampling distribution of $\hat{\beta}$ and $\hat{\sigma}^2$.

Theorem 1

- (i) $\frac{(n-k-1)\hat{\sigma}^2}{\sigma^2} \mid \mathbf{X} \sim \chi^2(n-k-1).$
- (ii) Conditional \mathbf{X} , $\hat{\sigma}^2$ and $\hat{\boldsymbol{\beta}}$ are independent.

Proof.

(i) According to (ii) of Lemma 1

$$\frac{(n-k-1)\hat{\sigma}^2}{\sigma^2} \mid \boldsymbol{X} = \frac{\boldsymbol{u}'M\boldsymbol{u}}{\sigma^2} \mid \boldsymbol{X} \sim \chi^2(\operatorname{rank}(M)) = \chi^2(\operatorname{tr}(M)) = \chi^2(n-k-1)$$

(*ii*) Note that $\hat{\sigma}^2 = \frac{1}{n-k-1} \boldsymbol{u}' M \boldsymbol{u}$ and $\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} = (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{u}$, then according to (*iii*) of Lemma 1 we claim that $\hat{\sigma}^2$ and $\hat{\boldsymbol{\beta}}$ are independent conditional on \boldsymbol{X} because

$$M\left(\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\right)'=\boldsymbol{0}$$

Definition 1 (student t distribution) A random variable T follows the student t distribution with q degrees of freedom, written as $T \sim t(q)$, if $T = \frac{U}{\sqrt{V/q}}$ where $U \sim N(0,1)$, $V \sim \chi^2(q)$, and U are V are independent.

Now we prove that $T_n \sim t(n-k-1)$. *Proof.* Let $S_n = (n-k-1)\hat{\sigma}^2/\sigma^2$. Then under $H_0: c'\beta = r$,

$$T_n = \frac{c'\hat{\boldsymbol{\beta}} - r}{\sqrt{\hat{\sigma}^2 c' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} c}} = \frac{c'(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\sqrt{\hat{\sigma}^2 c' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} c}}$$
$$= \frac{c'(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\sqrt{\sigma^2 c' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} c}}{\sqrt{\frac{(n-k-1)\hat{\sigma}^2/\sigma^2}{n-k-1}}}$$

Then the result follows from **Theorem 1** and **Definition 1**.

Recall the test statistic we construct for hypothesis testing with multiple linear restrictions,

$$F_n \equiv \frac{1}{q} (R\hat{\boldsymbol{\beta}} - r)' \left[\hat{\sigma}^2 R \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} R' \right]^{-1} (R\hat{\boldsymbol{\beta}} - r) \sim F(q, n - k - 1).$$

Now we prove this result using **Theorem 1** and following definition.

Definition 2 (F distribution) A random variable follows F distribution with (p,q) degrees of freedom, written as $F = \frac{U/p}{V/q}$ where $U \sim \chi^2(p)$, $V \sim \chi^2(q)$, U and V are independent.

 $\textit{Proof.} \quad \text{Since conditional } \boldsymbol{X} \text{ and under } H_0: R\boldsymbol{\beta} = r$

$$\hat{\boldsymbol{\beta}} \mid \boldsymbol{X} \sim N\left(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}\right), \quad R\hat{\boldsymbol{\beta}} - r \sim N\left(\boldsymbol{0}, \sigma^2 R(\boldsymbol{X}'\boldsymbol{X})^{-1}R'\right).$$

Therefore according to (i) of Lemma 1, conditional X

$$A_n \equiv (R\hat{\boldsymbol{\beta}} - r)' \left[\hat{\sigma}^2 R \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} R' \right]^{-1} (R\hat{\boldsymbol{\beta}} - r) \sim F(q, n - k - 1) \sim \chi^2(q).$$

Also, we have seen that conditional on \boldsymbol{X}

$$S_n \sim \frac{(n-k-1)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-k-1)$$

and based on **Theorem 1**, S_n and A_n are independent conditional X because $\hat{\sigma}^2$ and $\hat{\beta}$ are independent conditional on X. Then the desired result follows by writing

$$F_n = \frac{A_n/q}{S_n/(n-k-1)}$$

conditional on X.