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Basic Concepts

• Multivariate linear regression model expressed as follows

Y = β0 + β1Xi1 + β2Xi2 + · · ·+ βkXik + ui.

• An implicit assumption is explanatory variables Xi1, . . . , Xik

are mutually independent.
• If this assumption is violated, then we say there exists mul-

ticollinearity.
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Basic Concepts

• Perfect multicollinearity

c1Xi1 + c2Xi2 + . . .+ ckXik = 0

where there exists 1 ⩽ j ⩽ k such that cj ̸= 0.
• Approximate multicollinearity

c1Xi1 + c2Xi2 + . . .+ ckXik + νi = 0

where there exists 1 ⩽ j ⩽ k such that cj ̸= 0 and νi refers
to a random variable.
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Basic Concepts

• For multivariate regression model,

Y = Xβ + u

multicollinearity implies rank(X) < k + 1.
• There exists at least one column of X can be perfectly

(or approximately) linearly represented by other columns
of X. For instance, X2 = (or ≈)λX1.
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Problems of Multicollinearity

• Problems associated with perfect multicollinearity. We can-
not solve OLS as (no unique solution)

β̂ = (X ′X)
−1

X ′Y

since (X ′X)
−1 does not exist as X ′X is a singular matrix.

• Identification problem arises if there exists perfect multi-
collinearity. For instance, for multivariate regression

Y = β0 + β1X1 + β2X2 + u

it would degenerate to simple linear regression model if
X2 = λX1

Y = β0 + (β1 + λβ2)X1 + u
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Problems of Multicollinearity

Example (Identification problem)
Consider following regression model for consumption func-
tion

C = β0 + β1N + β2S + β3T + u

where C is the consumption, N is nonlabor income, S is
salary, T is total income, and u refers to the stochastic error
term. Since N + S = T , we cannot pin down the β1, β2 and
β3 uniquely.
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Problems of Multicollinearity

• Problems associated with approximate multicollinearity. X ′X

is approximately a singular matrix, |X ′X| ≈ 0, which leads
to the problem that the diagonal elements of (X ′X)

−1 are
large. Therefore,

Var
(
β̂
)
= σ2 (X ′X)

−1
.
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Problems of Multicollinearity

• For multivariate regression model

Yi = β0 + β1Xi1 +X i2β2 + ui

where X i2 = (1, Xi2, . . . , Xik), β2 = (β2, . . . , βk)
′. Then

Var
(
β̂1

)
= σ2

(∑
x2
i1

)−1 [
1−R2

X1,X2

]−1

where xi1 = Xi1 − X̄1 and R2
X1,X2

refers to the R2 when
running OLS of X1 on X2.
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Problems of Multicollineartiy

• Specifically when X i2 degenerate to a scalar Xi2, then

Yi = β0 + β1Xi1 + β2Xi2 + ui

and
Var

(
β̂1

)
=

σ2∑
x2
i1

· 1

1− r2

and r2 = R2
X1,X2

.
• More specifically,

r2 =
(
∑

xi1xi2)
2∑

x2
i1

∑
x2
i2

.
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Problems of Multicollinearity

• When there exists multicollinearity, large variance asso-
ciated with OLS estimator implies that either hypothesis
testing or prediction may fail.

• The signs of coefficients estimates may not be as expected
due to the identification problem or the high variance of
the estimator.

• Unless there exists perfect multicollinearity, multicollinear-
ity DOES NOT suggest violation of the classical assump-
tions.

• The OLS estimator, when faced with multicollinearity, is
not “perfect” due to the potentially induced high variance.
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Multicollinearity Detection

Detecting through the symptoms of multicollinear-
ity:
• The simplest way to detect multicollinearity is to calculate

the correlation matrix for the regressor (explanatory vari-
able).

• Regressing X1 on X2 and using corresponding r2 to deter-
mine whether there exists strong multicollinearity between
X1 and X2.

• Insignificant t-statistic on all or many coefficients, but large
F -statistic for testing whether all of the coefficients are
zero.

• The coefficient estimates may be sensitive to the deletion
of a statistically insignificant variable.
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Multicollinearity Detection

• The coefficient estimates may be very sensitive to the ad-
dition of one or a small number of observations.

• One may get very odd coefficient estimates possibly with
wrong signs due to the high variance of the estimator.

• Using F -statistic,

Fj =
R2

j/(k − 1)

(1−R2
j )/(n− k)

∼ F (k − 1, n− k)

where R2
j refers to the R2 when regressing the jth variable

on other (k − 1) variables included the regression model.
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Remedies for Multicollinearity

• Drop variables suspected of causing the multicollinearity
problem.

• To get more data. If you really want to know the separate
effects of X1 and X2 for example, you need to get as much
data as possible. This may not be always possible because
the data you need may be macro time series or it my be
very costly to get additional data.

• Try to impose any prior linear restrictions, if any, provided
by economic theory.

• Conduct ridge regression.
• Adding regressor step-by-step.
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Adding Regressor Step-by-Step: An Example

• Grain output as the explained variable Y . We collect 6

explanatory variables, denoted by X1 to X6.

• Establishing the regression model by including all the col-
lected explanatory variables,

lnY = β0 + β1 lnX1 + β2 lnX2 + β3 lnX3+

β4 lnX4 + β5 lnX5 + β6 lnX6 + u
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Adding Regressor Step-by-Step: An Example

• OLS estimation yields

ln Ŷ = −0.767 + 0.757 lnX1 + 0.246 lnX2 + 0.0002 lnX3

(0.367) (0.092) (0.097) (0.108)

+0.030 lnX4 − 0.032 lnX5 + 0.051 lnX6

(0.032) (0.034) (0.042)

R2 = 0.9850 R̄2 = 0.9812 F = 262.32

• Since F = 262.32 > F0.05(6, 24) = 2.51, we can claim that
β1, β2, β3, β4, β5 and β6 are not equal to zero simultane-
ously.

• But insignificant t-statistic for β3, β4, β5 and β6.
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Adding Regressor Step-by-Step: An Example

• Regressing Y on lnX1. (Model (1))

ln Ŷ = −0.684 + 1.004 lnX1

(−3.88) (35.14)

R2 = 0.9771 R̄2 = 0.9763

• Adding X2 and regressing Y on lnX1 and lnX2. (Model
(2))

ln Ŷ = −0.915 + 0.812 lnX1 + 0.238 lnX2

(0.215) (0.072) (0.083)

R̄2 = 0.9810
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(1) (2) (3) (4) (5) (6)

lnX1
1.004 0.812 0.769 0.813 0.820 0.761

(0.029) (0.072) (0.089) (0.074) (0.071) (0.075)

lnX2
0.238 0.209 0.241 0.281 0.231

(0.083) (0.091) (0.086) (0.087) (0.080)

lnX3
0.071

(0.088)

lnX4
-0.005
(0.028)

lnX5
-0.041
(0.029)

lnX6
0.050

(0.029)

Cons
-0.684 -0.915 -0.722 -0.930 -1.072 -0.734
(0.222) (0.215) (0.321) (0.234) (0.238) (0.231)

R̄2 0.9763 0.9810 0.9808 0.9803 0.9817 0.9823
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Ridge Regression

• Multicollinearity arises when X ′X is singular or approxi-
mately singular. How can we fix it ?

• Ridge regression is defined a special constrained regression,

β̂ridge = argmin
β

(Y −Xβ)′(Y −Xβ)

s. t. ||β||2 ≤ s

where ||β||2 = β′β.
• By establishing the Lagrangian we can equivalent claim

that

β̂ridge = argmin
β

(Y −Xβ)′(Y −Xβ) + λ||β||2.
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Ridge Regression

• By taking the first order derivative with respect to β, we
obtain

−2X ′
(
Y −Xβ̂ridge

)
+ 2λβ̂ridge = 0

which finally yields

β̂ridge = (X ′X + λI)
−1

X ′Y .

• β̂ridge always exists regardless of the behavior of X since
X ′X + λI is positive definite matrix.

• Ridge estimator is essentially about shrinkage, which in-
troduces bias but reduces the variance.
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