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Constrained Least Squares

e We can rewrite the OLS procedure in matrix form
min(Y — XB)/(Y — XB)
e We have matrix derivatives

Vo(Az—b) = A
V.(Az —b)'(Azx —b) = 2A"(Az — )

e By taking first order derivative of (Y — X3) (Y — X3)
with respect to 3 and set it equal to 0, we have

2X' (XB-Y)=0.
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Constrained Least Squares

e Now we consider the constrained least squares expressed in

matrix form,
mﬁin(Y - XB)(Y —XB) st. RB=r.
e Establishing Lagrangian

LBA) = (Y - XB)(Y - XB) + N(RB—71)
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Constrained Least Squares

e Taking first derivatives of £(8, A) with respect to 3 and A
and setting 0L(B,A)/08 =0, IL(B,A)/OX =0,

%g)‘) — 9X'Y +2X'XB,+ RA=0 (1)
OL(B,,\) _ pf _
— = RB, —r=20 ()

e Equation (f) implies that

A

b Lt
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Constrained Least Squares

e By substituting 3, in (1) we obtain
~ 1 _
BB =3 [R (X'X)" R’} A=

and we can solve A\ from it as follows

A

A=2 [R (X'X)"! R’} T (RB-).

e By substituting A in B*, we obtain the solution to the
constrained least squares,

A~

B.=B- (X'X)'R [R (X'X)"! R’} T (RB-1).
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Implications from Constrained Least Squares

e Let RSSy denote the residual sum of squares associated
with unconstrained least squares, and RSSg denote the the
residual sum of squares associated with constrained least
squares. Then

RSSy < RSSg..
e RSS does not increase as the number of explained variables
increase. Thus, RSS is a non-increasing function in k.
e In connection with the hypothesis testing,

Fo— (RSSR—RSSU) /q -

~RSSe k1) " F@n—k=1).
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Implications from Constrained Least Squares

e For this scenario, we consider imposing constraints such

that
6]:07 3217277k
Equivalently,
Y = Lﬂo +u
where ¢ = (1,--- ,1)/. For this constrained least squares,
ESSg = 0.

e We can derive that (when ¢ = k)

- RSSy/(n—k—1)

Rt /q
(I1-R{)/(n—Fk—1)

FE, or F, =
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Testing Structural Change

e Suppose we have following two regressions

Y = Bo+ X1+ 4 B Xp +ug
Y = ag+ a1 Xq+ -+ ap X+ uo

e We can stack these two regressions in matrix form

()= (0 ) () ()

and separately

Y, = Xy B+ w
nix1 n1x(k+1)(k+1)x1  nix1
Y2 = X2 (0% + uy
nax1 nox (k+1)(k+1)xX1  nyx1
Yaohan Chen (AHU) Spring, 2025

7/ 26



70-

65-
Data
> == PRF1
60- == PRF2
55-
° L]
L]
50-
12 14 16
X

Yaohan Chen (AHU) Spring, 2025 8/ 26



Testing Structural Change

e We want to test whether 3 = a. We can use 8 = « as the
hull hypothesis Hy.

e Without 8 = « restriction, OLS suggests that

Y, \ XIB " €
YQ B X2éf €2 .
T ——

Therefore, e'e = eje; + ehey, and €'e is RSSy, €le; is
RSSl, 8,262 is R882
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Testing Structural Change

e By imposing 3 = « restriction ((k + 1) restrictions), we

(V) (5)o ()
(;ﬁ;):(ﬁi)me*,

where B* refers to the restricted least squares solution and

obtain

and

e, refers to the corresponding residual. €’ e, denotes the

RSSkg.
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Testing Structural Change

e We can construct statistic for testing structural change.
Under Hj (corresponding to RSSg),

5 _ _(RSSR—RSSy) /(k+1)
" RSSU/ [m “+ ng — 2(:1{3 + 1)]
~F(k+1,n +ny—2(k+1))

or

_ [RSSg — (RSS, +RSS,)] /(k + 1)
~ F(k+ 1,01 +ny—2(k+ 1))
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Testing Structural Change

e The testing procedure can be summarized as follows

1. Splitting the sample into two parts, n = nj + no, and run
OLS for the separate samples to obtain RSS; and RSS9
respectively.

2. Running OLS for the original sample assuming there is no
structural change and obtain RSSRy.

3. Calculating testing statistic under Hy using RSSr, RSS;
and RSSs. Comparing the calculated statistic with the
threshold value.

e This testing procedure refers to the Chow test, introduced
by Gregory Chow in 1960.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e Recall that under Hy : R3 =,

F, = 2(RB—r) [ R(X'X) R]l(Rﬁ—r)NF(q,n—k—l).

|

This result holds for finite sample.

e When n — oo and assuming regular conditions hold, under
Hy and use RSSy /n as the proxy for 62,

W, = qF, 5 x*(q).

This refers to Wald test.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e Given the expression for W,,, we can derive

RSSk —RSSu 4
RSSy /(n—kh-D) X @

e nR2 test.
d
nR> % x*(q)

where ¢ refers to the number of restrictions and R? refers
to R? associated with following auxiliary regression

€R:50+51X1+(52X2+"'+5ka+€.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e To see nR? test statistic more clearly, suppose we impose ¢

restrictions such that g elements in (51, -, Bx) are zeros.

RSSR = eger

e Note that (why 7)

RSSR — RSSU - ESSaux
ESS of auxiliary regression
Consequently,
R2 d 2
F, = — .
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e [t can be shown that given ¢F, i> Xz(q),
(n—k— l)R2 4, X2(q).
Therefore,

nR? = (n —k—1)R? 4 *(q).

n—~kFk—1
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e Maximum Likelihood Estimation relies on likelihood func-
tion L (3, 0?).
e Unconstrained MLE:

Max : L (B, &2) .
e Constrained MLE:
Max : L (B,&2> st. g(B)=0.

Or through Lagrangian
L(B,0%) = Ng(B).
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e The key idea of Likelihood Ratio (LR) test is to test
9(B) = 0 by comparing likelihood of unconstrained model
and likelihood of constrained model.

e Suppose we have ¢ restrictions.

LR, = —2 [mL <B,&2) Il (Bxﬂ)} 4 22(q).
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e Lagrangian multiplier A can be used for constructing test
statistic. Under linear restrictions, we have the correspond-
ing test (Lagrangian Multiplier, LM test) statistic un-
der Hy: RB =,

LM, = #XNR(X'X) ' R,
where 2 and X refers to the solutions to constrained MLE.
e It can shown that under H,
LM, = nR? N X2(q),

R? is associated with the auxiliary regression.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

e Under some regular conditions, it can be shown that

W, = n<RSSR—RSSU>

RSSy
RSSir — RSSy
LM, = _—
”( RSSR )
B RSSk
LR, = nln <RSSU)

e Let z = (RSSgr —RSSy)/RSSy and using the the inequality
that for z > 0, /(1 + z) < In(1 + x) < z, we have

LM, < LR, < W,,.
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Dummy Variables

e Dummy variables in econometrics model.

D 1 Bachelor’s degree or higher education
~ ] 0 Without Bachelor’s degree or highre education

e We can also introduce dummy variable to indicate the gen-

der differences.
Y, = 6o+ 51Xi + B2 Di + u;

where Y] refers to the “wage income”, X; refers to the “years
of employmen”, and D; = 1 for male, D; = 0 for female.
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Dummy Variables

e Dummy variables can be added as additional regressors or

in combination with other variables.

e Dummy variables as additional regressors
E(Y: [ X;, D =0)=p+ /X

E(Y; | X;,D=1)= (8o + B2) + 1 Xi
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Dummy Variables

e Dummy variables in combination with other variables

D 1 rural residents
"] 0 urban residents

and we want to check the relationship between consumption
(C;) and income (X;) using regression

Ci = Bo + B1Xi + B2 D X; +

e D, distinguishes the marginal effect of income on consumption.

E(C; | X,D =1)=Bo+|(B1+ B2) |X;

E(Ci| X,D =0) = fo+|p1|X;
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Dummy Variables

e Dummy variables should satisfy the rank condition.

e Suppose we have following seasonal dummies

Dy = 1 Spring Dy = 1 Summer Dy = 1 Autumn
0 Other 0 Other 0 Other

and following regression model

Y = Bo+ i1 Xii + -+ BrXik + a1 Diy + aoDjg + a3 Dig +
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Dummy Variables

e We cannot add additional dummy D;, indicating Winter,

since otherwise for the regression model in matrix form

Y = (X, D) (g) tu

the first column of X can be represented by any linear
combination of vectors of D, therefore (X, D) is not full
rank.
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Dummy Variables

e Testing structural change using dummy variables.

Y. = Bo+00D;i+ 51 X1 +61 (D:iXin)+- - -+ B Xin+0k (D Xig)

7

1 {Y;, X, -+, Xi} from sample 1
0 {Y;, X1, -+, X} from sample 2

e Testing structural change(s) is equivalent to test

H0160:0,51:0,"' ,(SkZO
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