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Constrained Least Squares

• We can rewrite the OLS procedure in matrix form

min
β

(Y −Xβ)′(Y −Xβ)

• We have matrix derivatives

∇x(Ax− b) = A′

∇x(Ax− b)′(Ax− b) = 2A′(Ax− b)

• By taking first order derivative of (Y − Xβ)′(Y − Xβ)

with respect to β and set it equal to 0, we have

2X ′ (Xβ − Y ) = 0.
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Constrained Least Squares

• Now we consider the constrained least squares expressed in
matrix form,

min
β

(Y −Xβ)′(Y −Xβ) s.t. Rβ = r.

• Establishing Lagrangian

L(β,λ) = (Y −Xβ)′(Y −Xβ) + λ′(Rβ − r)

Yaohan Chen (AHU) Spring, 2025 2 / 26



Constrained Least Squares

• Taking first derivatives of L(β,λ) with respect to β and λ

and setting ∂L(β,λ)/∂β = 0, ∂L(β,λ)/∂λ = 0,

∂L(β̂∗,λ)

∂β
= −2X ′Y + 2X ′Xβ̂∗ +R′λ = 0 (†)

∂L(β̂∗,λ)

∂λ
= Rβ̂∗ − r = 0 (‡)

• Equation (†) implies that

β̂∗ = β̂ − 1

2
(X ′X)

−1
R′λ.
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Constrained Least Squares

• By substituting β̂∗ in (‡) we obtain

Rβ̂ − 1

2

[
R (X ′X)

−1
R′
]
λ = r,

and we can solve λ from it as follows

λ = 2
[
R (X ′X)

−1
R′
]−1

(Rβ̂ − r).

• By substituting λ in β̂∗, we obtain the solution to the
constrained least squares,

β̂∗ = β̂ − (X ′X)
−1

R′
[
R (X ′X)

−1
R′
]−1

(Rβ̂ − r).
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Implications from Constrained Least Squares

• Let RSSU denote the residual sum of squares associated
with unconstrained least squares, and RSSR denote the the
residual sum of squares associated with constrained least
squares. Then

RSSU ⩽ RSSR .

• RSS does not increase as the number of explained variables
increase. Thus, RSS is a non-increasing function in k.

• In connection with the hypothesis testing,

Fn =
(RSSR −RSSU) /q

RSSU /(n− k − 1)
∼ F (q, n− k − 1) .
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Implications from Constrained Least Squares

• For this scenario, we consider imposing constraints such
that

βj = 0, j = 1, 2, · · · , k.

Equivalently,
Y = ιβ0 + u

where ι = (1, · · · , 1)′. For this constrained least squares,
ESSR = 0.

• We can derive that (when q = k)

Fn =
ESSU/q

RSSU/(n− k − 1)
or Fn =

R2
U/q

(1−R2
U)/(n− k − 1)

.
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Testing Structural Change

• Suppose we have following two regressions

Y = β0 + β1X1 + · · ·+ βkXk + u1

Y = α0 + α1X1 + · · ·+ αkXk + u2

• We can stack these two regressions in matrix form(
Y 1

Y 2

)
=

(
X1 0

0 X2

)(
β

α

)
+

(
u1

u2

)

and separately
Y 1
n1×1

= X1
n1×(k+1)

β
(k+1)×1

+ u1
n1×1

Y 2
n2×1

= X2
n2×(k+1)

α
(k+1)×1

+ u2
n2×1
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Testing Structural Change

• We want to test whether β = α. We can use β = α as the
hull hypothesis H0.

• Without β = α restriction, OLS suggests that(
Y 1

Y 2

)
︸ ︷︷ ︸

Y

=

(
X1β̂

X2α̂

)
+

(
e1

e2

)
︸ ︷︷ ︸

e

.

Therefore, e′e = e′
1e1 + e′

2e2, and e′e is RSSU, e′
1e1 is

RSS1, e′
2e2 is RSS2.

Yaohan Chen (AHU) Spring, 2025 9 / 26



Testing Structural Change

• By imposing β = α restriction ((k + 1) restrictions), we
obtain (

Y 1

Y 2

)
=

(
X1

X2

)
β +

(
u1

u2

)
and (

Y 1

Y 2

)
=

(
X1

X2

)
β̂∗ + e∗,

where β̂∗ refers to the restricted least squares solution and
e∗ refers to the corresponding residual. e′

∗e∗ denotes the
RSSR.
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Testing Structural Change

• We can construct statistic for testing structural change.
Under H0 (corresponding to RSSR),

Fn =
(RSSR −RSSU) /(k + 1)

RSSU / [n1 + n2 − 2(k + 1)]

∼ F (k + 1, n1 + n2 − 2(k + 1))

or

Fn =
[RSSR− (RSS1+RSS2)] /(k + 1)

(RSS1+RSS2) / [n1 + n2 − 2(k + 1)]

∼ F (k + 1, n1 + n2 − 2(k + 1))
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Testing Structural Change

• The testing procedure can be summarized as follows
1. Splitting the sample into two parts, n = n1 + n2, and run

OLS for the separate samples to obtain RSS1 and RSS2

respectively.
2. Running OLS for the original sample assuming there is no

structural change and obtain RSSR.
3. Calculating testing statistic under H0 using RSSR, RSS1

and RSS2. Comparing the calculated statistic with the
threshold value.

• This testing procedure refers to the Chow test, introduced
by Gregory Chow in 1960.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• Recall that under H0 : Rβ = r,

Fn ≡ 1

q
(Rβ̂−r)′

[
σ̂2R (X ′X)

−1
R′
]−1

(Rβ̂−r) ∼ F (q, n−k−1).

This result holds for finite sample.
• When n → ∞ and assuming regular conditions hold, under
H0 and use RSSU /n as the proxy for σ̂2,

Wn ≡ qFn
d−→ χ2(q).

This refers to Wald test.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• Given the expression for Wn, we can derive

RSSR −RSSU

RSSU /(n− k − 1)

d−→ χ2(q).

• nR2 test.
nR2 d−→ χ2(q)

where q refers to the number of restrictions and R2 refers
to R2 associated with following auxiliary regression

eR = δ0 + δ1X1 + δ2X2 + · · ·+ δkXk + ε.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• To see nR2 test statistic more clearly, suppose we impose q

restrictions such that q elements in (β1, · · · , βk) are zeros.

RSSR = e′ReR

• Note that (why ?)

RSSR −RSSU = ESSaux︸ ︷︷ ︸
ESS of auxiliary regression

Consequently,

qFn =
R2

(1−R2)/(n− k − 1)

d−→ χ2(q).
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• It can be shown that given qFn
d−→ χ2(q),

(n− k − 1)R2 d−→ χ2(q).

Therefore,

nR2 =
n

n− k − 1
(n− k − 1)R2 d−→ χ2(q).
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• Maximum Likelihood Estimation relies on likelihood func-
tion L (β, σ2).

• Unconstrained MLE:

Max : L
(
β̂, σ̂2

)
.

• Constrained MLE:

Max : L
(
β̃, σ̃2

)
s.t. g(β) = 0.

Or through Lagrangian

L
(
β, σ2

)
− λ′g(β).
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• The key idea of Likelihood Ratio (LR) test is to test
g(β) = 0 by comparing likelihood of unconstrained model
and likelihood of constrained model.

• Suppose we have q restrictions.

LRn = −2
[
lnL

(
β̃, σ̃2

)
− lnL

(
β̂, σ̂2

)]
d−→ χ2(q).
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• Lagrangian multiplier λ can be used for constructing test
statistic. Under linear restrictions, we have the correspond-
ing test (Lagrangian Multiplier, LM test) statistic un-
der H0 : Rβ = r,

LMn = σ̃2λ̃
′
R (X ′X)

−1
R′λ̃,

where σ̃2 and λ̃ refers to the solutions to constrained MLE.
• It can shown that under H0

LMn = nR2 d−→ χ2(q),

R2 is associated with the auxiliary regression.
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Large Sample Hypothesis Testing:
Wald, LR and LM Tests

• Under some regular conditions, it can be shown that

Wn = n

(
RSSR −RSSU

RSSU

)

LMn = n

(
RSSR −RSSU

RSSR

)

LRn = n ln

(
RSSR
RSSU

)

• Let x = (RSSR −RSSU)/RSSU and using the the inequality
that for x > 0, x/(1 + x) < ln(1 + x) < x, we have

LMn ⩽ LRn ⩽ Wn.
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Dummy Variables

• Dummy variables in econometrics model.

D =

{
1 Bachelor’s degree or higher education
0 Without Bachelor’s degree or highre education

• We can also introduce dummy variable to indicate the gen-
der differences.

Yi = β0 + β1Xi + β2Di + ui

where Yi refers to the “wage income”, Xi refers to the “years
of employmen”, and Di = 1 for male, Di = 0 for female.
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Dummy Variables

• Dummy variables can be added as additional regressors or
in combination with other variables.

• Dummy variables as additional regressors

E (Yi | Xi, D = 0) = β0 + β1Xi

E (Yi | Xi, D = 1) = (β0 + β2) + β1Xi
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Dummy Variables

• Dummy variables in combination with other variables

D =

{
1 rural residents
0 urban residents

and we want to check the relationship between consumption
(Ci) and income (Xi) using regression

Ci = β0 + β1Xi + β2DiXi + ui

• Di distinguishes the marginal effect of income on consumption.

E (Ci | X,D = 1) = β0 + (β1 + β2) Xi

E (Ci | X,D = 0) = β0 + β1 Xi
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Dummy Variables

• Dummy variables should satisfy the rank condition.
• Suppose we have following seasonal dummies

Di1 =

{
1 Spring
0 Other

;Di2 =

{
1 Summer
0 Other

;Di3 =

{
1 Autumn
0 Other

and following regression model

Yi = β0+β1Xi1+ · · ·+βkXik +α1Di1+α2Di2+α3Di3+ui
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Dummy Variables

• We cannot add additional dummy Di4 indicating Winter,
since otherwise for the regression model in matrix form

Y = (X,D)

(
α

β

)
+ u

the first column of X can be represented by any linear
combination of vectors of D, therefore (X,D) is not full
rank.
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Dummy Variables

• Testing structural change using dummy variables.

Yi = β0+δ0Di+β1Xi1+δ1 (DiXi1)+· · ·+βkXik+δk (DiXik)

Di =

{
1 {Yi, Xi1, · · · , Xik} from sample 1
0 {Yi, Xi1, · · · , Xik} from sample 2

• Testing structural change(s) is equivalent to test

H0 : δ0 = 0, δ1 = 0, · · · , δk = 0.
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