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Small Sample Properties of OLS Estimator

e Recall the OLS estimator as follows

B=(X'X)"X'Y.

e OLS estimator is unbiased.

A

B = (XX)'X(XB+u =8+ (XX)"Xu

E(BIX) = (X'X) ' X'E(u| X) =5
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Small Sample Properties of OLS Estimator

e Variance of OLS estimator B

Var (3] X) = E[(B-E®)(B-EQB)) | X
= (X'X)"' X'E (wu) X (X'X) "
- (X'X) ' X', X (X'X)"!
= 2(X'X)""

e Among all the linear unbiased estimator of 3, denoted by
) ) A
Var (ﬁ | X) — Var (5 | X)
is semi-positive definite matrix (positive semi-definite ma-
trix).
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Large Sample Properties of OLS Estimator

e OLS estimator 3 is consistent for 3.
PlimB3 = B+ Plim(X'X)™' X'u
1 - 1
= B+ <Plim —X’X) Plim (—X'u)
n n
e According to the law of large numbers, we have
. 1 / . 1 / /
Plim—-X'X = Plm-Y X,X;=E(X;X])=Q
n n
1 1
Plim—X'u = Plim— Y Xu; =E(Xu)=0
im —X'u 1rnnz u (X u;)

where XZ- = (1, Xﬂ, Xz'27 te 7Xik>/'
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Large Sample Properties of OLS Estimator

e OLS estimator [3 is asymptotically efficient. Besides, under
some regular conditions, B asymptotically follows a multi-

variate normal distribution
Vi (8-8) 4N (0.Q'vQ ).
where

Q = E(X,X))
V = E(X;X[u})
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Hypothesis Testing

e With the classical assumptions Assumption 1 to As-

sumption 5, for small sample we have
BIX~N|8.0*(X'X)"|,

and for large sample we can relax the Assumption 5 as-
sociated with normality assumption and have

BIXAN [ﬂ,aQ (X’X)‘l} .
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Hypothesis Testing

e Single linear restriction: t-test. For the single linear re-
striction, we can express the null hypothesis Hy and the
alternative hypothesis H; in matrix form as follows

Hy:dB=rversus H : B #r

where c refers to a (k + 1) vector and r is a scalar.

e With Assumption 5,

/B X ~N (0/5,0'26/ (X'X)"" C)
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Hypothesis Testing

e Under Hy,

B —r
\/020’ (X'X) e

~ N(0,1).

Specifically, if ¢ is a vector with 1 in its jth place and 0
elsewhere, and r = 3;, then

~

Bj ~ N (Bj,0°cj;)

where c;; denotes the jth element on the diagonal of square
matrix (X'X) .

Yaohan Chen (AHU) Spring, 2025 7/ 22



Hypothesis Testing

e Ton construct a valid statistic under Hy, we use the sample

estimation 62 as the proxy for o2. Under H,,

Bi—B; B — B

t= = — ~tn—k—1),
Sg, V€07
where
Lo ee
T n—k—1
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Hypothesis Testing

e Multiple linear restrictions: F-test. We consider testing ¢

linear restrictions on 3,
Hy: RB=rversus Hy : RB #r

where R is a known matrix of order ¢ x (k+1) with ¢ < k+1
and 7 is a known ¢ x 1 vector. We assume rank (R) = q.

Example. If
010 ...0
0
001 ...0
= . . . . |=0L r=]: q=Fk
000 ...1
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Hypothesis Testing

Example (Cont’d). This is equivalent to testing

Hoiﬁlz...zﬁkzo.
H1 : Elﬂj#() (32172,,]{)
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Hypothesis Testing

e In general, under H,

N -1 N
F, = S(RB=r) [#R (X' X)) R)" (RB—r) ~ Flg,n—k-1)
q
e Equivalently, when Hy: 1 =...=06,=0,q=k:
ESS/q R?*/q
F, = F, = )
RSS/(n—k—1) 1-R)/(n—k-1)

o Wereject Hyif F}, > F,, (¢,n — k — 1), where F,, (¢,n — k — 1)
refers to the threshold for a given level of significance.
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Hypothesis Testing

e {-test and F-test. Suppose that we are still interested in testing
Hy : Bj = pjo (for instance, Bjo = 0 or any other value you want
test).

e In this case, ¢ = 1, r = o, and R is row vector with 1 in its
jth place and 0 elsewhere. Then under Hy, RB —r= Bj — B
and R(X'X)" 'R = [(X’X)fl} . The test static is

Ji

2

~

Bj — Bj
\/62 [(X/X)_l} JJj

e Note the expression inside the curly bracket is just the t-statistic.

F, =

~ F(1,n—k — 1) under Hy.
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Prediction

e Given the fitted model (or sample regression function)
Y = X3

and explanatory variable X = (1, Xo1, Xog2,, -, Xok), we
can express the prediction for Y} as follows

Yo = XoB
e For a given X

E(Yo) = (XoB) = XoE(B) = X8 = E(¥)
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Prediction

e For a given X

Var <Yg> = E <XOB — X05>2
= E[Xy(B-8)(B - 8)X)
= X, Var <B> X
= 2X, (X'X)" X,
e If we further have normality assumption, then

Yo ~ N (XoB,0° X0 (X'X) ' X))
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Prediction

e Confidence interval for E (Yp).
- Note that for given X and X

Yo — E(Y))
o ’ —1 5~/
o/ Xo (X'X) L X}

~tn—k—1)

- Given the level of significance «

Yo —ta X &\/XO (X'X) ' X, <E(Yp) <

Yo+ ta x 6\/X0 (xX'x)"' X
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Prediction

e We can also use Yj as the prediction for Yy. The prediction

error for Yy is eg = Yy — V5.

e For given X

E (ep) = E<X0ﬁ+u0—XOB>

= E (u) - X0E<ﬁ 8)

E (uo) =

Var (eg) = B |ug — Xo (X'X)” X’u]2

= o (14 X0 (X'X) " X))
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Prediction

e Confidence interval for Y.
- For given X and X

Y, - Y,
+— 0 0

Oeq

~tn—k—1)

where

€0

6%, = 6% [1+ Xo (X'X) " X5

- Given the level of significance «

ffo—t% x&\/1+X0(X’X)_1X6<Y0<

Yo—f—t% X (3\/1—|—X0 (X’X)_1X6
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Linearization

e How to linearize a non-linear function f(x). Log-linearization

is one technique we commonly adopt in economics analysis.

e Recall the Cobb-Douglas function
Q= AK°L”.
By taking logs on both sides of the equation, we have

In@Q@=mmA+alnK + FlnL.
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Linearization

e CES function
Q=A(BK " +6L7") 7 e (6, +0,=1)

e Define )
f(K,L)=A (51K_p + 52L_p)_5
e Elasticity of substitution,

dIn(L/K)

RN )
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Linearization

e Recall that

e

So L P71

fx = ALK +8,L77)
fo = A(GK™" +6,L7) ¢~

1

and

In(fr/fx) = In(d2/61) — (p+1)In(L/K)
din(fr/fx) = —(p+1)In(L/K)

Therefore,

1
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Linearization

e By taking log of ), we obtain
1
mQ=mIA—--In(6, K7 +6&L7")+u
p

e By expanding In (61 K7 + 9L~ ") at p = 0 using Taylor
series to the second order, we obtain

1 K\1?
lnYzlnA+511nK+521nL—§p5152 In T .
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Nonlinear least squares

e We can summarize the multivariate linear regression model

in a more generic form,

[ (X0, Xo, -, Xi, Bo, By -+ 5 Bre) + .

e Given the sample {X;, Y;}! |, we seek B such that

Q(8) =2 s (x.8)]

1=
is minimized.

e Numerical methods are needed for obtaining 8.
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