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Small Sample Properties of OLS Estimator

• Recall the OLS estimator as follows

β̂ = (X ′X)
−1

X ′Y .

• OLS estimator is unbiased.

β̂ = (X ′X)
−1

X ′(Xβ + u) = β + (X ′X)
−1

X ′u

E
(
β̂ | X

)
= (X ′X)

−1
X ′ E (u | X) = β

Yaohan Chen (AHU) Spring, 2025 1 / 22



Small Sample Properties of OLS Estimator

• Variance of OLS estimator β̂

Var
(
β̂ | X

)
= E

[
(β̂ − E(β̂))(β̂ − E(β̂))′ | X

]
= (X ′X)

−1
X ′E (uu′)X (X ′X)

−1

= (X ′X)
−1

X ′σ2InX (X ′X)
−1

= σ2 (X ′X)
−1

• Among all the linear unbiased estimator of β, denoted by
β̃,

Var
(
β̃ | X

)
− Var

(
β̂ | X

)
is semi-positive definite matrix (positive semi-definite ma-
trix).
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Large Sample Properties of OLS Estimator

• OLS estimator β̂ is consistent for β.

P lim β̂ = β + P lim (X ′X)
−1

X ′u

= β +

(
P lim

1

n
X ′X

)−1

P lim

(
1

n
X ′u

)
• According to the law of large numbers, we have

P lim
1

n
X ′X = P lim

1

n

∑
X iX

′
i = E (X iX

′
i) = Q

P lim
1

n
X ′u = P lim

1

n

∑
X ′

iui = E (X ′
iui) = 0

where X i = (1, Xi1, Xi2, · · · , Xik)
′.
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Large Sample Properties of OLS Estimator

• OLS estimator β̂ is asymptotically efficient. Besides, under
some regular conditions, β̂ asymptotically follows a multi-
variate normal distribution

√
n
(
β̂ − β

)
d−→ N

(
0,Q−1V Q−1

)
.

where

Q ≡ E (X iX
′
i)

V ≡ E
(
X iX

′
iu

2
i

)
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Hypothesis Testing

• With the classical assumptions Assumption 1 to As-
sumption 5, for small sample we have

β̂ | X ∼ N
[
β, σ2 (X ′X)

−1
]
,

and for large sample we can relax the Assumption 5 as-
sociated with normality assumption and have

β̂ | X a∼ N
[
β, σ2 (X ′X)

−1
]
.
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Hypothesis Testing

• Single linear restriction: t-test. For the single linear re-
striction, we can express the null hypothesis H0 and the
alternative hypothesis H1 in matrix form as follows

H0 : c
′β = r versus H1 : c

′β ̸= r

where c refers to a (k + 1) vector and r is a scalar.
• With Assumption 5,

c′β̂ | X ∼ N
(
c′β, σ2c′ (X ′X)

−1
c
)
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Hypothesis Testing

• Under H0,

c′β̂ − r√
σ2c′ (X ′X)

−1
c
∼ N(0, 1).

Specifically, if c is a vector with 1 in its jth place and 0

elsewhere, and r = βj, then

β̂j ∼ N
(
βj, σ

2cjj
)

where cjj denotes the jth element on the diagonal of square
matrix (X ′X)

−1.
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Hypothesis Testing

• Ton construct a valid statistic under H0, we use the sample
estimation σ̂2 as the proxy for σ2. Under H0,

t =
β̂j − βj

Sβ̂j

=
β̂j − βj√
cjjσ̂2

∼ t(n− k − 1),

where
σ̂2 =

e′e

n− k − 1
.
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Hypothesis Testing

• Multiple linear restrictions: F -test. We consider testing q

linear restrictions on β,

H0 : Rβ = r versus H1 : Rβ ̸= r

where R is a known matrix of order q×(k+1) with q < k+1

and r is a known q × 1 vector. We assume rank (R) = q.
Example. If

R =


0 1 0 . . . 0

0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 = [0 Ik] r =

 0
...
0

 q = k
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Hypothesis Testing

Example (Cont’d). This is equivalent to testing

H0 : β1 = . . . = βk = 0.

H1 : ∃ βj ̸= 0 (j = 1, 2, · · · , k).
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Hypothesis Testing

• In general, under H0

Fn ≡ 1

q
(Rβ̂−r)′

[
σ̂2R (X ′X)

−1
R′
]−1

(Rβ̂−r) ∼ F (q, n−k−1).

• Equivalently, when H0 : β1 = . . . = βk = 0, q = k:

Fn =
ESS/q

RSS/(n− k − 1)
or Fn =

R2/q

(1−R2)/(n− k − 1)
.

• We reject H0 if Fn > Fα (q, n− k − 1), where Fα (q, n− k − 1)

refers to the threshold for a given level of significance.
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Hypothesis Testing

• t-test and F -test. Suppose that we are still interested in testing
H0 : βj = βj0 (for instance, βj0 = 0 or any other value you want
test).

• In this case, q = 1, r = βj0, and R is row vector with 1 in its
jth place and 0 elsewhere. Then under H0, Rβ̂ − r = β̂j − βj

and R (X ′X)
−1

R′ =
[
(X ′X)

−1
]
jj

. The test static is

Fn =


β̂j − βj√

σ̂2
[
(X ′X)

−1
]
jj


2

∼ F (1, n− k − 1) under H0.

• Note the expression inside the curly bracket is just the t-statistic.
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Prediction

• Given the fitted model (or sample regression function)

Ŷ = Xβ̂

and explanatory variable X0 = (1, X01, X02, , · · · , X0k), we
can express the prediction for Y0 as follows

Ŷ0 = X0β̂

• For a given X0

E
(
Ŷ0

)
= E

(
X0β̂

)
= X0 E(β̂) = X0β = E (Y0)
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Prediction

• For a given X0

Var
(
Ŷ0

)
= E

(
X0β̂ −X0β

)2

= E
[
X0(β̂ − β)(β̂ − β)′X ′

0

]
= X0Var

(
β̂
)
X ′

0

= σ2X0 (X
′X)

−1
X ′

0

• If we further have normality assumption, then

Ŷ0 ∼ N
(
X0β, σ

2X0 (X
′X)

−1
X ′

0

)
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Prediction

• Confidence interval for E (Y0).
- Note that for given X and X0

Ŷ0 − E (Y0)

σ̂

√
X0 (X

′X)
−1

X ′
0

∼ t(n− k − 1)

- Given the level of significance α

Ŷ0 − tα
2
× σ̂

√
X0 (X

′X)
−1

X ′
0 < E (Y0) <

Ŷ0 + tα
2
× σ̂

√
X0 (X

′X)
−1

X ′
0
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Prediction

• We can also use Ŷ0 as the prediction for Y0. The prediction
error for Y0 is e0 = Y0 − Ŷ0.

• For given X0

E (e0) = E
(
X0β + u0 −X0β̂

)
= E (u0)−X0 E

(
β̂ − β

)
= E (u0) = 0

Var (e0) = E
[
u0 −X0 (X

′X)
−1

X ′u
]2

= σ2
(
1 +X0 (X

′X)
−1

X ′
0

)
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Prediction

• Confidence interval for Y0.
- For given X and X0

t =
Ŷ0 − Y0
σ̂e0

∼ t(n− k − 1)

where
σ̂2
e0 = σ̂2

[
1 +X0

(
X ′X

)−1
X ′

0

]
- Given the level of significance α

Ŷ0 − tα
2
× σ̂

√
1 +X0 (X

′X)
−1

X ′
0 < Y0 <

Ŷ0 + tα
2
× σ̂

√
1 +X0 (X

′X)
−1

X ′
0
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Linearization

• How to linearize a non-linear function f(x). Log-linearization
is one technique we commonly adopt in economics analysis.

• Recall the Cobb-Douglas function

Q = AKαLβ.

By taking logs on both sides of the equation, we have

lnQ = lnA+ α lnK + β lnL.
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Linearization

• CES function

Q = A
(
δ1K

−ρ + δ2L
−ρ
)− 1

ρ eu (δ1 + δ2 = 1)

• Define
f(K,L) = A

(
δ1K

−ρ + δ2L
−ρ
)− 1

ρ

• Elasticity of substitution,

EISLK = − d ln(L/K)

d ln(fL/fK)
.
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Linearization

• Recall that

fK = A
(
δ1K

−ρ + δ2L
−ρ
)− 1

ρ
−1

δ1K
−ρ−1

fL = A
(
δ1K

−ρ + δ2L
−ρ
)− 1

ρ
−1

δ2L
−ρ−1

and

ln (fL/fK) = ln (δ2/δ1)− (ρ+ 1) ln (L/K)

d ln (fL/fK) = − (ρ+ 1) ln (L/K)

Therefore,
EISLK =

1

1 + ρ
.
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Linearization

• By taking log of Q, we obtain

lnQ = lnA− 1

ρ
ln
(
δ1K

−ρ + δ2L
−ρ
)
+ u

• By expanding ln (δ1K
−ρ + δ2L

−ρ) at ρ = 0 using Taylor
series to the second order, we obtain

lnY = lnA+ δ1 lnK + δ2 lnL− 1

2
ρδ1δ2

[
ln

(
K

L

)]2
.
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Nonlinear least squares

• We can summarize the multivariate linear regression model
in a more generic form,

f (X1, X2, · · · , Xk, β0, β1, · · · , βk) + u.

• Given the sample {X i, Yi}ni=1, we seek β̂ such that

Q
(
β̂
)
=

n∑
i=1

[
Yi − f

(
X i, β̂

)]2
is minimized.

• Numerical methods are needed for obtaining β̂.
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