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Basic Settings

e The multivariate linear regression model can be expressed
as follows

Y =08+ 51 X1+ BoXo+ -+ + B Xi + u.
e Affine population regression function is
E(Y | X1, Xy, - Xg) = fo + 1. X1 + BoXo + -+ - + Bp Xy

o 3; is referred to as the partial regression coefficient,
designating the extent to which E (Y') changes as X; changes
by one unit.
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Basic Settings for Multiple Linear Regression
Model

e For specific sample {(X;1, Xjo,..., X, Vi) :i=1,2,--- ,n},
Yi = Bo+ B1Xa + BaXio + - + BeXip + u,

or in matrix form

Y =XB+u
where
Yy 1 X1 X2 - Xk
Yo 1 Xo1 Xoo -+ Xy
Y = X=1 . | } .
Yn nx1 1 an Xn2 to Xnk nx (k+1)
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Basic Settings
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Basic Settings

e Sample regression function for multiple linear regression

model
?:Bo+31X1+5)2X2+“'+Bka.

e For specific sample { (X1, Xy, ..., X, V) i =1,2,--- ,n},
we have equivalent representation of sample regression func-

tion

Bo+ 51X + BoXia + - + BuXn
Y, = Bo + BlXil + BQXQ + -+ BkXik + e;

=
I

where ¢; is referred to as the residual.
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Basic Settings

e Sample regression function in matrix form

Y = X3
Y =XB+e
where
A AR
v | a2 |7 =]
v, 5 e
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Basic Assumptions

Assumption 1: Model is correctly specified, that is
Y = X3+ u.

Assumption 2: Nonsingularity assumption. The rank of
X'X is k + 1 with probability 1 and X'X /n converges in
probability to an invertible matrix, i.e. Plim X'X /n = Q
and @Q is invertible.
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Basic Assumptions

Assumption 3: Strict exogeneity.
E(u; | X1, X0, , X)) =0 i=1,2,---,n,

or in matrix form

E(u|X)=0.

Besides, Assumption 3 implicitly suggests that Vi, j
E (u; | X45) =0,
or by denoting the i-th row of X, we have

E (Xju;) = 0.
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Basic Assumptions

Assumption 4: Spherical error variance.

Var(uZ|X1,X2’-.-’Xk):O'2 /[::172’...7/’7/.

COV(uiauj’XbX%“'an):Oai#ja Zaj:1727
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Basic Assumptions

and in matrix form

uy Uy Uy,
Var(u | X) = E(uu' | X) = E :
Up Uy u?
o? 0
= : =o’I,
0 o?

where I,, denotes indentity matrix of n dimensions.
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Basic Assumptions

Assumption 5: Normality assumption

u; | X1, X0, , Xi, ~ N (0,07).
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OLS Estimation

e Given the sample {(X;1, X9, -+, Xix, ;) 11 =1,2,-+- . n},
the target of OLS estimation finding Sy, 81, , B such
that the sample regression function takes affine functional

form
Yi = 6o+ 51X + BoXio + - + B Xk

and
n N2
Q- X=X (n-¥)
i=1
is minimized.
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OLS Estimation

e By taking partial derivatives of () with respect to Bj (j =
0,1,---,k) and setting the corresponding partial deriva-
tives equal to 0, we obtain the system equations as follows

( N A ~
> <Yi —Bo— b1 Xi1 — BaXig — - — ﬁkXik;> =0
> Xa (YQ —Bo— b1 X — PaXig— - — BkXik) =0
> Xio (Yi —Bo— 51 Xn — PaXig— - — Bszk) =0
| X (Yi— o= BuXan = BoXio — o = BuXas) = 0
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OLS Estimation

By rearranging the system of equations, we can obtain the
matrix representation

n > Xa > Xik Bo

N Xao Y X3 > XaXik B1

> Xie Y XaXi XA By

——
X' X 5

n Z Xﬂ Z Xik Yl

[ Xxa X xR XX | | Y2
> Xk > XuXi S X2 Y,

X'y
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OLS Estimation

Given Assumption 2, which suggests that that X'X is

invertible, we obtain the OLS estimator expressed in matrix

form:
B=(X'X)"X'Y.

Yaohan Chen (AHU) Spring, 2025 14 / 26



Geometric Interpretation

e The system of equations above can be expressed in a com-
pact form X'e = 0 since

X'X3=X (XB + e)
Y

e Using the property X'e = 0, we can show that

?250+3171+5272+"'+5k7k-
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Geometric Interpretation

e Projection Matrices.
B=(X'X)"'XY
Y =XB=X(X'X)'XY=PY
e=Y -Y=Y-PY=(I,-P)Y=MY

e P and M are symmetric and idempotent.
P=XX'X)"'"X'X(XX)'X=X(X'X)"'X'=P
M?*=(I,-P)(I,-P)=I1,-P—-P+P*=1,-P=M

e For idempotent matrix P and M,

tr (P) =rank (P) tr(M) =rank (M).

Yaohan Chen (AHU) Spring, 2025 16 / 26



Geometric Interpretation

e PX=X, MX =0, and PM =0.
e Trace of P and M,
tr(P) = tr | X (X'X)" X’] — tr [(X’X)*1 X'X
= tr(Iy) =Fk+1
tr(M)=tr (I, — P)=tr(I,) —tr(P)=n—Fk—1

e Matrix representation of residuals e and dependent vari-
ables Y.

e = MY =M(XB+u)=Mu
Y = (P+M)Y =Y +e
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Geometric Interpretation

e=MY

PY = X151 + Xafs

»
>

X1

0]
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Geometric Interpretation

e Matrix representation of sum of squared residuals.

Ze? = €ele
— (Mu) (Mu)
= u'Mu
= Y'MY

e Unbiased estimation of o2

6,2 o Z 6? 6/8

T h—k—-1 n—k-1
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Moment Estimation

e Recall that based on Assumption 3 we have E (Xu;) = 0,
which serve as the population moment condition. By using
the sample moment condition as the proxy for population

moment condition
1 , .
SDIP.¢ (Y - XiﬁMM) —0.

e The sample moment condition can be expressed in matrix form
as follows L
~X'(Y — XBypy) = 0.
n

Hence, the moment estimator is equivalent to the OLS estima-
tor.
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Maximum Likelihood Estimation

e Given the normality assumption in Assumption 5 and the
1.1.d. assumption in Assumption 4, we can write down the

likelihood function in terms of parameters to estimated,

1 _ . . .
L (/@70-2) — —(QW)ggne_%lzE[Yz—(,30+B1X11+52Xz2+~~-+5szk)}2
_ L h-xpv-xp)
(2m)20m
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Maximum Likelihood Estimation

e By taking log of the likelihood function, we obtain the log like-
lihood function as follows

L* = InL

= —nin (V2re) - % (Y — XB) (Y — XB)

e By taking partial derivatives of L* with respect to ¢ and 3
and setting the partial derivatives equal to 0, we obtain

;BLN; - ML (Y - XBML) -0
OL* na (Y - XBML)/ (Y - XBML)
063, - 2163, i 2631, =0
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Maximum Likelihood Estimation

and we finally solves as follows
A = (X'X)X'Y

L (Y - XBML) (Y - XBML) ee

e By, is equivalent to the OLS estimator but 62, is biased.
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Goodness of Fit

e Recall the previous definition

Z ( — 37)2 = Z y? Total Sum of Squares

> (v

RSS = Z (Y; — A,~>2 = Z e? Residual Sum of Squares

TSS

=

ESS

=~

2
) = Z ? Explained Sum of Squares

e It can be shown that

TSS = ESS+RSS.
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Goodness of Fit

e Based on the decomposition above

RSS

2
=1—-——.
k TSS

e With an intercept included in the regression model, it can
be shown that 0 < R? < 1.

e R? never decreases when additional regressors are included.

e A better measure of goodness-of-fit is given by the adjusted
coefficient of determination,

RSS/(n—k—l)_1 n—1
- TSS/(n—1) n—k—l(

R*=1 1—-R?).
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Summary

Basic settings and assumptions for multiple linear regres-

sion model.

OLS estimation for multiple linear regression model.

Geometric interpretation for OLS.

Properties of OLS estimator.

Goodness of fit and interpretation using matrix language.
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