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Recall: Bivariate Linear Regression Model

e Recall the bivariate linear regression model
Y = 50 + BlX + U,

where 3y and ; are parameters to be estimated, and
- o is referred to as the intercept.
- By is referred to as the slope.

e We observe Y and X as sample,
{(X:,Y;):i=1,2,...,n}
e For each 1, bivariate linear regression model suggests

Yi = Bo+ 51X +u,.

Yaohan Chen (AHU) Spring, 2025 1/15



Recall: Ordinary Least Square Estimation

Normal equations

> (Y- Bo- 41 Xi) =0
X (Yi-Bo-5iXi)=0

Solution
B _YXZRYi-Y X X0
0 Ty X2 (2X:)?
By = nEYX TR X,

ny X2-(X X;)*
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Assumptions for Simple Linear Regression

Assumption 1: Model is correctly specified.
(1) Variables are correctly selected.

(2) Model is correctly specified.

Assumption 2: Explanatory variable converges in proba-

bility to constant.

Plimzn:(Xi—X)Q/ne Q.
=1

n—oo <
1
Assumption 3: Stochastic error has zero expectation.
E(u; | X)=0.
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Assumptions for Simple Linear Regression

E (u; | X) = 0 suggests that Cov (u;, X) =0, i.e. u; is uncor-
related with X. We need an important tool called Law of
Iterated Expectations, LIE.

Assumption 4: Homeskedasticity and no correlation.
Var (u; | X) =02 i=1,2,-n

Cov (uj,u; | X)=0 i+j

And similarly due to LIE, we have

Var (u;) = 0%
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Assumptions for Simple Linear Regression

Assumption 5: Normality.
ui | X ~N(0,0%).

Assumption 1 to Assumption 5 are usually referred to as
the classical assumption, and the corresponding linear regres-
sion model is referred as to the Classical Linear Regression
Model, CLRM.

e Specifically, Assumption 5 can be relaxed in large sample,
Assumption 1 to Assumption 4 refers to the Gauss-Markov

assumption.

e For bivariate linear regression model

Y| X ~N(Bo+B1X,0%).
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Statistical Properties

e Statistics and statistical properties of statistics.

Small-sample-properties:

- Unbiasedness
- Efficiency

Large-sample-properties:
- Consistency
e 0 is unbiased if E (é) = @, that is the average value of 6 over

all realizations is equal to the underlying population value.

o 0 is efficient if it has smaller variance than any other
unbiased estimator.
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Statistical Properties

e Convergence in Probability. A sequence of random
variables { X, } converges in probability to a random vari-
able X if, for every e >0,

lim P (| X, - X| > €) =0.

Notation: X, 2 X, or Plim (X,,) = X.

e An estimator @ is consistent if Plim (é) =0.

Yaohan Chen (AHU) Spring, 2025 7/ 15



Small-Sample-Properties of OLS Estimator

e OLS estimator is a linear combination of Y;.

Bl = Zkin‘ Boz sz‘Y%

where k; = % and w; = % - XFk;.

e OLS estimator is unbiased.
e OLS estimator is efficient.

e OLS estimator is best linear unbiased estimator (BLUE).
This claim is usually referred to as the Gauss-Markov
theorem.
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Large-Sample Properties of OLS Estimator

e Large sample properties refer to the properties of statistics
when sample size is “sufficiently large”, i.e. n — oo.

e Weak Law of Large Numbers. Suppose X1,...,X,, and
i.i.d. with E||X1|| < oo, then as n — oo,

n

Y X, L E(X

i=1

3IH

e OLS estimator is consistent.

Plim (B + 3 ksu;) = Plim (By) + Plim ( szwg)

Y xiui/ny
x23/n ) o
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Distributions Associated with OLS Estimator

e If we stick to the Normality assumption (Assumption 5),

it can be easily shown that for the finite sample
~ 0’2
~ N .
51 (517 Z IZZ )
X X7 2)

o
ny a?

By ~ N(ﬁo,
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Distributions Associated with OLS Estimator

e By relaxing the normality assumption under the large sam-

ple, assymptotically we have
5 o?
51 N (517 Z )

5 x X7
(507 ZI? 2)

e

S
2
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Estimation of o2

Ze? = Z(yi_gi)z

= Z[(51‘31)$i+(ui—ﬂ)]2

= Z(ﬁl—31)2$?+Z(ui—ﬂ)Q—QZ(Zk‘iui)xi (u; —u)
e Note that

e Hence

2622 = Z(ﬁl_Bl)zx?+Z(ui_a)Q—QZ:L‘iuiniui

2
2 T;
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Estimation of o2

2.2
Y = 52
¥ a?

B[X (8- 51) | X] = N a? Var (B ] X) =

E[Y (u-a) | X]

E[(>uf-2a) u;+nu?) | X]
E[(Zuf—m’b?ﬂX] =(n-1)0?

X]:a2

2
> 7

X] -F [ Y ziui +2 Yiej (wim;) (wiuy)
H

e Finally

E(} el | X)=0+(n-1)0?-20" = (n-2)0”.
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Sample Variance of OLS Estimator

e We denote the estimation of o2 by 62 as follows

2
52 D€

:n—2

e With 62, we obtain the sample variance of Bl and Bo re-

spectively as follows

2
S,

0% i
62> X2 In >y a?

2
S
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Summary

Classical assumptions for simple linear regression.

Law of Iterated Expectations.

Statistical properties of OLS estimator.

Corresponding Distributions.
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Variance of [;

Var(Bl |X)
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Var (Y kY; | X)
Zk? Var [(50 + BIXZ + U/l) | X]
> k7 Var (u; | X)

2 2
xX; 2 g
Z(Zx?) 7L
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