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Recall: Bivariate Linear Regression Model

● Recall the bivariate linear regression model

Y = β0 + β1X + u,

where β0 and β1 are parameters to be estimated, and
- β0 is referred to as the intercept.
- β1 is referred to as the slope.

● We observe Y and X as sample,

{(Xi, Yi) ∶ i = 1,2, . . . , n}

● For each i, bivariate linear regression model suggests

Yi = β0 + β1Xi + ui.
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Recall: Ordinary Least Square Estimation

Normal equations

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑(Yi − β̂0 − β̂1Xi) = 0

∑Xi (Yi − β̂0 − β̂1Xi) = 0

Solution
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

β̂0 =
∑X2

i ∑Yi−∑Xi∑XiYi

n∑X2
i −(∑Xi)

2

β̂1 =
n∑YiXi−∑Yi∑Xi

n∑X2
i −(∑Xi)

2
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Assumptions for Simple Linear Regression

Assumption 1: Model is correctly specified.
(1) Variables are correctly selected.
(2) Model is correctly specified.

Assumption 2: Explanatory variable converges in proba-
bility to constant.

P lim
n→∞

n

∑
i=1

(Xi − X̄)
2
/n→ Q.

Assumption 3: Stochastic error has zero expectation.

E (ui ∣X) = 0.
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Assumptions for Simple Linear Regression

E (ui ∣X) = 0 suggests that Cov (ui,X) = 0, i.e. ui is uncor-
related with X. We need an important tool called Law of
Iterated Expectations, LIE.

Assumption 4: Homeskedasticity and no correlation.

Var (ui ∣X) = σ
2 i = 1,2,⋯, n

Cov (ui, uj ∣X) = 0 i ≠ j

And similarly due to LIE, we have

Var (ui) = σ
2.
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Assumptions for Simple Linear Regression

Assumption 5: Normality.

ui ∣X ∼ N (0, σ
2
) .

Assumption 1 to Assumption 5 are usually referred to as
the classical assumption, and the corresponding linear regres-
sion model is referred as to the Classical Linear Regression
Model, CLRM.

● Specifically, Assumption 5 can be relaxed in large sample,
Assumption 1 to Assumption 4 refers to the Gauss-Markov
assumption.

● For bivariate linear regression model

Y ∣X ∼ N (β0 + β1X,σ2
) .
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Statistical Properties

● Statistics and statistical properties of statistics.

Small-sample-properties:
- Unbiasedness
- Efficiency

Large-sample-properties:
- Consistency

● θ̂ is unbiased if E (θ̂) = θ, that is the average value of θ̂ over
all realizations is equal to the underlying population value.
● θ̂ is efficient if it has smaller variance than any other

unbiased estimator.
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Statistical Properties

● Convergence in Probability. A sequence of random
variables {Xn} converges in probability to a random vari-
able X if, for every ϵ > 0,

lim
n→∞

P (∥Xn −X∥ ≥ ϵ) = 0.

Notation: Xn
p
Ð→X, or P lim (Xn) =X.

● An estimator θ̂ is consistent if P lim (θ̂) = θ.
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Small-Sample-Properties of OLS Estimator

● OLS estimator is a linear combination of Yi.

β̂1 = ∑kiYi β̂0 = ∑wiYi

where ki =
xi

∑x2
i

and wi =
1
n − X̄ki.

● OLS estimator is unbiased.
● OLS estimator is efficient. More discussion

● OLS estimator is best linear unbiased estimator (BLUE).
This claim is usually referred to as the Gauss-Markov
theorem.
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Large-Sample Properties of OLS Estimator

● Large sample properties refer to the properties of statistics
when sample size is “sufficiently large”, i.e. n→∞.
● Weak Law of Large Numbers. Suppose X1, . . . ,Xn and

i.i.d. with E ∣∣X1∣∣ < ∞, then as n→∞,

X̄n =
1

n

n

∑
i=1

Xi
p
Ð→ E (X1) .

● OLS estimator is consistent.

P lim (β̂1) = P lim (β1 +∑kiui) = P lim (β1) + P lim(
∑xiui

∑x2
i

)

= β1 + P lim(
∑xiui/n

∑x2
i /n
) = β1.
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Distributions Associated with OLS Estimator

● If we stick to the Normality assumption (Assumption 5),
it can be easily shown that for the finite sample

β̂1 ∼ N (β1,
σ2

∑x2
i

)

β̂0 ∼ N (β0,
∑X2

i

n∑x2
i

σ2)
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Distributions Associated with OLS Estimator

● By relaxing the normality assumption under the large sam-
ple, assymptotically we have

β̂1
a
∼ N (β1,

σ2

∑x2
i

)

β̂0
a
∼ N (β0,

∑X2
i

n∑x2
i

σ2)
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Estimation of σ2

∑ e2i = ∑(yi − ŷi)
2

= ∑[(β1 − β̂1)xi + (ui − ū)]
2

= ∑(β1 − β̂1)
2
x2
i +∑(ui − ū)

2
− 2∑(∑kiui)xi (ui − ū)

● Note that

−2∑(∑kiui)xi (ui − ū) = −2∑xiui∑kiui + 2ū∑xi∑kiui

= −2∑xiui∑kiui

● Hence

∑ e2i = ∑(β1 − β̂1)
2
x2
i +∑(ui − ū)

2
− 2∑xiui

∑xiui

∑x2
i
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Estimation of σ2

E [∑(β1 − β̂1)
2
x2
i ∣X] = ∑x2

i Var (β̂1 ∣X) =
∑x2

iσ
2

∑x2
i

= σ2

E [∑(ui − ū)
2
∣X] = E [(∑u2

i − 2ū∑ui + nū
2) ∣X]

= E [(∑u2
i − nū

2) ∣X] = (n − 1)σ2

E [
(∑xiui)

2

∑x2
i

∣ X] = E [
∑x2

iu
2
i + 2∑i≠j (xixj) (uiuj)

∑x2
i

∣ X] = σ2

● Finally

E (∑ e2i ∣X) = σ
2 + (n − 1)σ2 − 2σ2 = (n − 2)σ2.
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Sample Variance of OLS Estimator

● We denote the estimation of σ2 by σ̂2 as follows

σ̂2 =
∑ e2i
n − 2

.

● With σ̂2, we obtain the sample variance of β̂1 and β̂0 re-
spectively as follows

S2
β̂1
= σ̂2/∑x2

i

S2
β̂0
= σ̂2

∑X2
i /n∑x2

i

Yaohan Chen (AHU) Spring, 2025 14 / 15



Summary

● Classical assumptions for simple linear regression.
● Law of Iterated Expectations.
● Statistical properties of OLS estimator.
● Corresponding Distributions.
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Variance of β̂1

Var (β̂1 ∣X) = Var (∑kiYi ∣X)

= ∑k2
i Var [(β0 + β1Xi + ui) ∣X]

= ∑k2
i Var (ui ∣X)

= ∑(
xi

∑x2
i

)

2

σ2 =
σ2

∑x2
i

Back
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