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Relationship

● Relationship between variables
- Deterministic

Area of a Circle = f (π, radius) = π ⋅ radius2

- Correlation

yield = f (temperature,percipitation, sunshine, fertilizer)

+ randomness
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Correlation Analysis

● Linear correlation and Non-linear correlation
● Linear population correlation

ρXY =
Cov (X,Y )√

Var(X)Var (Y )

● Linear sample correlation

rXY =

n

∑
i=1

(Xi − X̄) (Yi − Ȳ )
¿
ÁÁÀ n

∑
i=1

(Xi − X̄)
2

n

∑
i=1

(Yi − Ȳ )
2
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Regression Analysis

● explained variable (or dependent variable), Y .
● explanatory variable (or independent variable), X.
● Regression: to recover relationship.

- to explain Y in terms of X.
- to study how Y varies with changes in X.
- to predict Y for given values of X.

Example：By how changes the hourly wage for additional
year of schooling ?
● Regression analysis lays the methodological foundation for

Econometrics.
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Population Regression Model

Example:

● Community with 99 families.
- Y : monthly expenditure.
- X: monthly income.

● Dissecting 99 families into 10 groups.
● Can we predict expenditure if we know income ?
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Population Regression Model

Analysis:

● For specific income level, i.e. given X, expenditure level
may be different, i.e. Y varies. Why ?

● We can depict the uncertainty using conditional dis-
tribution. For instance,

P(Y = 561 ∣X = 800) = 1/4

Income X 800 1100 1400 1700 2000 2300 2600 2900 3200 3500
Conditional Probability 1/4 1/6 1/11 1/13 1/13 1/14 1/13 1/10 1/9 1/6
Conditional Mean E (Y ∣X) 605 825 1045 1265 1485 1705 1925 2145 2365 2585
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● For given X = Xi, we calculate the conditional mean
of Y .

E (Y ∣X =Xi)
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Population Regression Model

● Population Regression Line is a line depicting the con-
ditional expectation of explained variable Y conditional on
X. It is referred to as Population Regression Curve.
● The function associated with the population regression line

is called the Population Regression Function, PRF

E (Y ∣X) = f (X) .

● What is the functional form of f(X) ?
● If f(X) is linear,

E (Y ∣X) = β0 + β1X.

where β0 and β1 are called the regression coefficients.
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Population Regression Model

● PRF describes how Y varies across X on average. But
the Y we observe are random variables.
● How to model the randomness ?

u = Y −E (Y ∣X) .

where u depicts the deviation of Y relative to E (Y ∣X).
● u is unobserved random variable, referred to as the stochas-

tic error or stochastic disturbance.
● In general, we have Population Regression Model

Y = E (Y ∣X) + u.
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Population Regression Model

● Bivariate linear regression model

Y = β0 + β1X + u.

- systematic part: β0 + β1X, or deterministic part.
- nonsystematic part: u.

Why do we need to include u ?

● The unknown potential determinants.
● Missing data for various reasons.
● Insignificant determinants.

Yaohan Chen (AHU) Spring, 2025 10 / 22



Population Regression Model

● Bivariate linear regression model

Y = β0 + β1X + u.

- systematic part: β0 + β1X, or deterministic part.
- nonsystematic part: u.

Why do we need to include u ?
● The unknown potential determinants.
● Missing data for various reasons.
● Insignificant determinants.

Yaohan Chen (AHU) Spring, 2025 10 / 22



Population Regression Model

● Measurement errors.
● Model misspecification errors.

- stochastic error u can only partially capture errors of this
kind.

● Other randomness.
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Sample Regression Function

● We observe the sample of random variable, say {Yi}ni=1 of
Y . How to use the sample information to approximate the
population information ?

X 800 1100 1400 1700 2000 2300 2600 2900 3200 3500
Y 638 935 1155 1254 1408 1650 1925 2068 2266 2530

● Scatter Diagram:
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Sample Regression Function

● A line that fits the scatters is Sample Regression Line.
● Sample Regression Function, SRF is the functional

form associated with the sample regression line

Ŷ = β̂0 + β̂1X.

● Sample Regression Function as the approximation of Pop-
ulation Regression Function.

Y = E (Y ∣X) + u
= β0 + β1X + u
= β̂0 + β̂1X + e
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Sample Regression Function

● e is referred to as residual.
● SRF and PRF

Regression: To Estimate PRF via SRF.
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Recall: Bivariate Linear Regression Model

● Recall the bivariate linear regression model

Y = β0 + β1X + u,

where β0 and β1 are parameters to be estimated, and
- β0 is referred to as the intercept.
- β1 is referred to as the slope.

● We observe Y and X as sample,

{(Xi, Yi) ∶ i = 1,2, . . . , n}

● For each i, bivariate linear regression model suggests

Yi = β0 + β1Xi + ui.
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Ordinary Least Square Estimation

● Estimating Sample Regression Function is equivalent to ob-
tain estimation of β0 and β1. Alternatively, how to estab-
lish the connection between sample and β0 and β1.

● Among all the available estimation methods, we first con-
sider obtaining β̂0 and β̂1 by minimizing quadratic loss
function

Q =
n

∑
i=1

e2i =
n

∑
i=1

(Yi − Ŷi)
2 =

n

∑
i=1

[Yi − (β̂0 + β̂1Xi)]
2

● Q measures the deviation as the sum of the squared devi-
ations of Yi to Ŷi.
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Ordinary Least Square Estimation

● By taking derivatives with respect to β̂0 and β̂1 and the
first order partial derivatives equal to 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Q

β̂0

= 0

∂Q

β̂1

= 0

● Solution ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂0 =
∑X2

i ∑Yi −∑Xi∑XiYi

n∑X2
i − (∑Xi)2

β̂1 =
n∑YiXi −∑Yi∑Xi

n∑X2
i − (∑Xi)2
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Ordinary Least Square Estimation

● By Letting xi = Xi − X̄ and yi = Yi − Ȳ , we can rewrite β̂0

and β̂1 as
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β̂1 =
∑xiyi

∑x2
i

β̂0 = Ȳ − β̂1X̄

● β̂0 are β̂1 are called the Ordinary Least Square estima-
tor, or OLS estimator.

Yaohan Chen (AHU) Spring, 2025 18 / 22



Goodness-of-Fit

● How “good” SRF approximation is relative to PRF ?
● Decomposition of yi = Yi − Ȳ

yi = Yi − Ȳ = (Yi − Ŷi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ei

+(Ŷi − Ȳ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ŷi

X

Y

O

Ȳ

Xi

Yi

Ŷi
yi

ei

ŷi

SRF
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Goodness-of-Fit

● By taking the sum of squared yi, we have

∑ y2i = ∑ ŷ2i +∑ e2i + 2∑ ŷiei

and ∑ ŷiei = 0 (why).
● TSS = ESS + RSS:

∑ y2i
´¸¶

TSS

= ∑ ŷ2i
´¸¶

ESS

+∑ e2i
´¸¶
RSS

where TSS refers to Total Sum of Squares, ESS refers to
Explained Sum of Squares, and RSS refers to Residual
Sum of Squares.
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Goodness-of-Fit

● We can define the measure of goodness-of-fit as follows

R2 = ESS
TSS

= 1 − RSS
TSS

.

R2 is called the coefficient of determination.
● We can calculate R2 as follows due to the definition of ESS

R2 = β̂2
1 (
∑x2

i

∑ y2i
) .

R2 can be interpreted as the fraction of sample variation
of Y that is explained by X.
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Summary

● Regression.
● Population Regression Function and Sample Regression Func-

tion.
● Ordinary Least Square estimation and the corresponding

derivation.
● Goodness of Fit.
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