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Linear Algebra

We begin by recalling some elementary notions from linear
algebra needed for introducing random vectors.

A vector x of dimension n is an ordered collection of n

numbers, which are called components or elements:

x = (x1, . . . , xn)

Example

x = (2,3), y = (−1,2), z = (
√
2,0, π)
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Linear Algebra

Two vectors x and y of common dimension n are added com-
ponent by component:

x + y = (x1 + y1, . . . , xn + yn)

Example
If x = (2,3) and y = (−1,2), then

x + y = (2 + (−1),3 + 2) = (1,5),

Two vectors x and y of common dimension n are added com-
ponent by component:

x + y = (x1 + y1, . . . , xn + yn)
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Linear Algebra

If a is a number, we will sometimes refer to a as a scalar.

If a is a scalar and x is a vector, then the product ax of a
and x is

ax = (ax1, . . . , axn)

If a = 0 we get ax = 0 where 0 is the zero vector, i.e. the
vector of same dimension as x with all components equal to
zero.
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Linear Algebra

A matrix can be viewed in different ways: either as an array
of numbers ordered into rows and columns, or as a collection
of vectors.

Example

A = ( 2 2 −1
3 1 0

)

The vectors (2,3), (2,1) and (−1,0) are the columns of A.
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Linear Algebra

A matrix has m rows and n columns

A =

⎛
⎜⎜⎜⎜⎜
⎝

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ⋯ amn

⎞
⎟⎟⎟⎟⎟
⎠

To indicate the dimension of a matrix we sometimes write Am×n.
Example

B =
⎛
⎝

2 2

3 1

⎞
⎠

B is a 2 × 2 matrix with, for example, element b12 = 2. B is a
so-called square matrix, i.e. a matrix with the same number of
rows as columns (m = n).
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Linear Algebra

Matrix addition of two matrices of common dimension is
analogous to vector addition, and it can be shown that the
previously mentioned properties of vectors also hold for ma-
trices.

Example

( 1 3

7 −1
) + ( 2 5

8 1
) = ( 3 8

15 0
)

⎛
⎜⎜
⎝

2 3

1 5

6 4

⎞
⎟⎟
⎠
−
⎛
⎜⎜
⎝

1 9

7 4

2 5

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −6
−6 1

4 −1

⎞
⎟⎟
⎠
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Linear Algebra

We can also define matrix multiplication:

Let A be a m × l matrix, with row i and column k element
aik , and let B be a l × n matrix, with row k and column j

element bkj . Then cij , the row i and column j element of
the matrix C =AB, is given by

cij =
l

∑
k=1

aikbkj

Example

( 2 1

1 0
)( 0 4

2 1
) = ( 2 × 0 + 1 × 2 2 × 4 + 1 × 1

1 × 0 + 0 × 2 1 × 4 + 0 × 1
) = ( 2 9

0 4
)
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Linear Algebra

Remark
From the definition it follows that the number of columns
of A must equal the number of rows of B in order for the
product C =AB to be well-defined:

Am×lBl×n =Cm×n

Moreover, in general, AB is different from BA.
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Linear Algebra

Some elementary properties of matrices:

Let a be a scalar, and let A, B and C be matrices of di-
mensions such that the left-hand side expressions below are
well-defined. Then,

A(B +C) =AB +AC

A(aB) = a(AB)
(AB)C =A(BC)
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Linear Algebra

The identity matrix, I, of dimension n is the n × n matrix
with elements along its main diagonal equal to 1, and all
other elements equal to 0:

In =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0

0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0

0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟
⎠

It is easy to verify that

ImA =A =AIn

for all m × n matrices A.
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Linear Algebra

Let A be a square matrix. If there exists a matrix A−1

such that A−1A = I, where I is the identity matrix of same
dimension as A, then A−1 is called the inverse of A. Not all
matrices have an inverse.

Example

If A1×1 = a11 and a11 ≠ 0, then A−1 = 1
a11

If B = ( 2 1

1 0
), then B−1 = ( 0 1

1 −2
)
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Linear Algebra

The transpose A⊺ of a matrix Am×n is the n ×m matrix
whose ith column is the ith row of A:

A =

⎛
⎜⎜⎜⎜⎜
⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

⎞
⎟⎟⎟⎟⎟
⎠

, A⊺ =

⎛
⎜⎜⎜⎜⎜
⎝

a11 a21 ⋯ am1

a12 a22 ⋯ am2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ amn

⎞
⎟⎟⎟⎟⎟
⎠

● A square matrix A with A⊺ = A is called a symmetric
matrix.
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Linear Algebra

The determinant of a 2 × 2 matrix

A = ( a11 a12
a21 a22

)

is given by the scalar

∣A∣ = a11a22 − a12a21

The determinant of a general n × n matrix is more compli-
cated but can be defined recursively.
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Linear Algebra

One case is particularly simple:

The determinant of a diagonal matrix is the product of the
elements along its main diagonal:

∣A∣ = a11 ×⋯ × ann

Example

Since ∣In∣ = 1 ×⋯× 1, the determinant of the identity matrix
is one.
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Sets

We begin by recalling some elementary notions from set the-
ory needed for introducing concepts from probability theory.

• A set is a collection of objects. Sets are usually denoted
by upper-case letters such as A, B or C.

• If an object c belongs to a set C we write c ∈ C (read,
“c in C”).

• If c does not belong to C we write c ∉ C (read, “c not
in C”).

• If c1, . . . , cn are objects, the set consisting of precisely
these n objects is denoted by {c1, . . . , cn}.
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Sets

• The objects belonging to a set A are called its elements
(or members). The elements can be anything, e.g.
numbers, outcomes or other sets.

• Let A and B be sets. The intersection of A and B

is the set whose elements are those objects c such that
c ∈ A and c ∈ B. We write A ∩ B (read, “A intersect
B”).

• The union of A and B is the set whose elements are
those objects c such that c belongs to at least one of
the two sets A,B (i.e. either c ∈ A or c ∈ B, or both).
We write A ∪B (read, A union B).
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Sets

Example

When flipping a coin, ‘head’ or ‘tail’ occurs. If A = {head, tail}
and B = {head}, then

A ∩B = {head} and A ∪B = {head, tail}
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Sets

Figure : The union of A and B illustrated using a Venn diagram
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Sets

Figure : The intersection of A and B
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Sets

• If all elements of a set A are also elements of a set B,
we say that A is a subset of B, and write A ⊂ B.

• Empty set is the set that has no members. The empty
set is denoted by ∅.

• The set ∅ is a subset of any set.
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Sets

The difference of two sets A and B, written in A−B, is the
set of all elements that are in A but not in B.

Example
If A = {STI,HSI,SSE} and B = {HSI}, then A−B = {STI,SSE}.

If A and B have no elements in common we say that the two
sets are disjoint, A ∩B = ∅.

Let A ⊂ C. The complement of A in C is the set of elements
that belong to C but not to A. We write Ac .

Example The possible outcomes of a coin tossing experi-
ment are ‘head’ and ‘tail’. Here C = {head, tail}. Hence, if
A = {head}, then Ac = {tail}.
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Function

A function is a rule that associates each member of one set
with a member of another set.

Figure : A function f takes an input x and returns an output f(x).
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Random Variables

● Assigning a value to each random outcome.
● When tossing a coin we can write ‘1’ for ‘head’ and ‘0’

for tail. In this way, we get a random variable X(ω) ↦
{0,1}, where ω belongs to the sample space F = {head, tail}.
● F is a abstract space collecting all possible outcomes of

the underlying experiment.
● The random variable X (ω) is nothing but a real-valued

function defined on F (i.e. a numerical summary of a
random outcome).
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Random Variables

● How to make F complete ? F should be like:
- If A ∈ F , so is its complement Ac;
- If A,B ∈ F , so are A ∩B, A ∪B, A ∪Bc, B ∪Ac, A ∩Bc,
B ∩Ac, etc.

● In some advanced textbooks F is called σ-filed.
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Probability

● Probability is a measure such that for each A ∈ F , it assigns
a number P (A) ∈ [0,1].
● Probability should satisfy:

- For A,B ∈ F

P(A ∪B) = P(A) +P(B) −P(A ∩B)

- If A and B are disjoint,

P(A ∪B) = P(A) +P(B)

- Moreover,

P (Ac) = 1 −P(A), P(F) = 1 and P(∅) = 0
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Distribution

● The collection of the probabilities

FX(x) = P(X ≤ x) = P({ω ∶X(ω) ≤ x}), x ∈R

is the Cumulative Distribution Function (CDF) FX(x)
of X. FX(x) of X gives the probability that X belongs to the
interval (a, b] as

P({ω ∶ a <X(ω) ≤ b}) = FX(b) − FX(a), a < b

● Continuous distributions have Probability Density Func-
tion (PDF) fX(x):

FX(x) = ∫
x

−∞
fX(t)dt, x ∈R, and∫

∞

−∞
fX(t)dt = 1
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Random Vectors

In the following lectures we will frequently make use of cer-
tain finite-dimensional random structures.

We consider finite-dimensional random vectors:

X = (X1, . . . ,Xn) is a n-dimensional random vector if its
components X1, . . . ,Xn are one-dimensional real-valued ran-
dom variables.
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Random Vectors

Example

Toss a coin. We consider the pairs

(head,head), (tail,tail), (head,tail), (tail,head)

as outcomes of the experiment. These four pairs form the
sample space F . We can write ‘1’ for ‘head’ and ‘0’ for ‘tail’.
In this way, we get two random variables X1 and X2, and
X = (X1,X2) is a two-dimensional random vector.
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Random Vectors

Example (Cont’d)

Note that

X (head,head) = (1,1) , X (tail, tail) = (0,0)

X (head, tail) = (1,0) , X (tail,head) = (0,1)

If the coin is ‘fair’, we can assign the probability 0.25 to each
of the four outcomes, i.e.

P ({ω ∶X(ω) = (k, i)}) = 0.25, k, i ∈ {0,1}
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Random Vectors

● The collection of the probabilities

FX(x) = P (X1 ≤ x1, . . . ,Xn ≤ xn)
= P ({ω ∶X1(ω) ≤ x1, . . . ,Xn(ω) ≤ xn})

where x = (x1, . . . , xn) ∈Rn, is the joint CDF FX of X.
● FX(x) is the shorthand for FX1,...,Xn (x1, . . . , xn).
● Correspondingly, joint PDF of FX is

FX(x) = FX (x1, . . . , xn) = ∫
x1

−∞
⋯∫

xn

−∞
fX (w1, . . . ,wn)dw1⋯dwn
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Random Variable:
Expectation, Variance, Moment

● Expectation

µX = E(X) = ∫
∞

−∞
xfX(x)dx

● Variance

σ2
X = Var(X) = ∫

∞

−∞
(x − µX)2 fX(x)dx

• I-th moment

E (XI) = ∫
∞

−∞
xIfX(x)dx
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Correlation

● Correlation between two random variables X1 and X2 is
defined as

Corr (X1,X2) =
Cov (X1,X2)

σX1σX2

= E [(X1 − µX1) (X2 − µX2)]
σX1σX2

● −1 ≤ Corr (X1,X2) ≤ 1. Why ?
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Independence

Two events A1 and A2 are independent if

P (A1 ∩A2) = P (A1)P (A2)

Two random variables X1 and X2 are independent if

P (X1 ∈ B1,X2 ∈ B2) = P (X1 ∈ B1)P (X2 ∈ B2)

for all suitable subsets of B1 and B2 of R. This means that
the events

{c ∶X1(ω) ∈ B1} and {ω ∶X2(ω) ∈ B2}

are independent.
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Independence

● The random variables X1, . . . ,Xn are mutually indepen-
dent if and only if their joint CDF can be written as

FX1,...,Xn (x1, . . . , xn) = FX1 (x1)×⋯×FXn (xn) , (x1, . . . , xn) ∈Rn

● If the random vector X = (X1, . . . ,Xn) has joint PDF fX =
fX1,...,Xn with marginal pdfs fX1 , . . . , fXn , then X1, . . . ,Xn

are mutually independent if and only if

fX1,...,Xn (x1, . . . , xn) = fX1 (x1)×⋯×fXn (xn) , (x1, . . . , xn) ∈Rn
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Correlation and Independence

● Uncorrelated random variables ⇒ Independent Random
Variables ? Any counterexample ?
● If the random variables X1, . . . ,Xn are mutually indepen-

dent and have the same distribution, we say that they are
independent and identically distributed (iid).
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Random Vectors:
Expectation,Variance-Covariance Matrix

● Expectation

µX = E(X) = (E (X1) , . . . ,E (Xn))

● The Variance-covariance matrix of X is defined as the matrix
ΣX with row i column j element given by

Cov (Xi,Xj) , i, j = 1, . . . , n

where
Cov (Xi,Xj) = E [(Xi − µXi) (Xj − µXj

)]
= E (XiXj) − µXiµXj

and Cov (Xi,Xi) = σ2
Xi

.
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Normal Distribution

The most important continuous distribution is the normal
or Gaussian distribution:

A random variable X is said to be normally distributed
or N (µ,σ2) with parameters −∞ < µ <∞ if

fX(x) =
1√
2πσ

e−
1
2
(x−µ

σ
)2 , −∞ < x <∞

and when µ = 0 and σ = 1, X is called standard normal.

The CDF of standard normal distribution has its own nota-
tion Φ(x).
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Multivariate Normal Distribution

The Multivariate Normal Distribution (n-
dimensional normal) or Gaussian Distribution is
given by its joint PDF

fX(x) =
1

(2π)n/2∣Σ∣1/2
exp{−1

2
(x −µ)Σ−1(x −µ)⊺} , x ∈Rn

with parameters µ ∈ Rn and Σ is symmetric (positive defi-
nite) n × n matrix, Σ−1 its inverse and ∣Σ∣ its determinant.
Multivariate Normal Distribution is denoted by N (µ,Σ)
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Multivariate Normal Distribution

Example

Suppose X = (X1,X2) is 2-dimensional normal with

µ = (0,0) and Σ = I2 =
⎛
⎝

1 0

0 1

⎞
⎠

then
fX(x) = fX (x1, x2) =

1

2π
e−

1
2
(x2

1+x2
2)

for x ∈R2.
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Multivariate Normal Distribution

Example

If µ = 0 and Σ = In, then the density fX is simply the prod-
uct of n standard normal densities:

fX (x1, . . . , xn) = φ (x1) ×⋯ × φ (xn) , φ(x) = 1√
2π

e−
x2

2

Let X = (X1, . . . ,Xn) have an N (µ,Σ) distribution and A

be an m × n matrix. Then AX⊺ has an N (Aµ⊺,AΣA⊺)
distribution.

In the Gaussian case, uncorrelatedness and independence
are equivalent notions. This statement is wrong for non-
Gaussian vectors.
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Multivariate Normal Distribution

Example

If µ = 0 and Σ = In, then the density fX is simply the prod-
uct of n standard normal densities:

fX (x1, . . . , xn) = φ (x1) ×⋯ × φ (xn) , φ(x) = 1√
2π

e−
x2

2
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χ2 Distribution, t-Distribution, and F -Distribution

● If Z1, . . . , Zk are iid standard normal random variables,
then

k

∑
i=1

Z2
i = Z2

1 +Z2
2 +⋯ +Z2

k ∼ χ2
(k)

● A random variable T follows the student t distribution with
k degrees of freedom, written as T ∼ t(k) if T = U√

V /k , where
U ∼ N (0,1), V ∼ χ2

(k), and U and V are independent.
● A random variable F follows the F -distribution with (m,n)

degrees of freedom, written as F ∼ F (m,n), if F = U/m
V /n ,

where U ∼ χ2
(m) and V ∼ χ2

(n), and U and V are indepen-
dent.
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Sampling

● In a typical real-world statistical problem, we have a ran-
dom variable X of interest, but the PDF f(x) is not known.
● Our lack of knowledge can be classified in on e of two ways:

- f(x) is completely unknown.

- The functional form of f(x) is assumed to be known up
to a parameter vector θ.

Example
X has a normal distribution N (µ,σ2), where θ = (µ,σ2).
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Sampling

We often write f(x; θ), where θ ∈ Ω for a specified set Ω, to
emphasize that the PDF is known up to θ.

Example
If X has a normal distribution N (µ,σ2), then

Ω = {θ = (µ,σ2) ∶ µ ∈R, σ2 > 0}

● We call θ a parameter of the distribution.
● As θ is unknown, we want to estimate it.
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Sampling

In practice, our information about the unknown distribution
of X, or the unknown parameters of the distribution of X,
comes from a sample of X.

The sample observations have the same distribution as X,
and we denote them as the random variables X1, . . . ,Xn.

● n denotes the sample size.
● When the sample is actually drawn, we use lower case let-

ters x1, . . . , xn to denote the values or realizations of the
sample
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Statistics

We often use functions of a sample to summarize the infor-
mation in it:

Let X1, . . . ,Xn denote a sample of a random variable X, and
let T = T (X1, . . . ,Xn) be a function of the sample, then T

is called a statistic.

● T is a random variable, and has nothing to do with θ.
● Once is the sample is drawn, t is called a realization of
T , where t = T (x1, . . . , xn) and x1, . . . , xn is the realization
of the sample.
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Statistics

Let X1, . . . ,Xn denote a sample of random variable X with
a pdf f(x; θ), where θ ∈ Ω for a specified set Ω.

● Statistic T is called a point estimator of θ, usually de-
noted by θ̂.
● The realization t of T is called an estimate of θ.

Point estimator might have various properties: unbiasedness,
consistency, and efficiency.
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Statistics

We temporarily focus on unbiasedness, but leave the dis-
cussion about consistency and efficiency later.

Let X1, . . . ,Xn denote a sample of a random variable X with
pdf f(x; θ), θ ∈ Ω, and let T = T (X1, . . . ,Xn) be a statistic.
Then T is an unbiased estimator of θ if E(T ) = θ.

● The mean of an unbiased estimators sampling distribution
is located at the true (but unknown) value of the parameter
of interest.
● An estimator T of θ with E(T ) ≠ θ is biased.
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Statistics

Example

Consider the dataset where the variable of interest X is
the number of operating hours until the first failure of air-
conditioning units for Boeing 720 airplanes.

A sample with size n = 13 was obtained, with realized values:

359,413,25,130,90,50,50,487,102,194,55,74,97

● θ̂ = 1
n ∑

n
i=1Xi is a point estimator of θ.

● 1
n ∑

n
i=1 xi = 1

13(359+413+25+130+90+50+50+487+102+
194+55+74+97) = 163.5385 is the corresponding estimate
of θ.
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Confidence Intervals

We use confidence intervals to measure the error of the cor-
responding estimate:

Let X1, . . . ,Xn be a sample of a random variable X, where
X has pdf f(x; θ), θ ∈ Ω. Let 0 < α < 1 be specified. Let
L = L (X1, . . .Xn) and U = U (X1, . . . ,Xn) be two statistics.
The interval (L,U) is a (1 − α)100% confidence interval
for θ if

1 − α = Pθ[θ ∈ (L,U)]

where Pθ refers to the probability when θ is the true pa-
rameter. That is, the probability that the random interval
includes θ is 1 − α, which is called the confidence level of
the interval.
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Confidence Intervals

Example

Suppose, for simplicity, that θ̂ denotes the estimator of θ for
N (θ, σ2) with σ2 known. Then,

Pθ (−zα/2 <
θ̂ − θ
σ
< zα/2) = Pθ (−zα/2 < Z < zα/2) = 1 − α

where we have used that Z is a standard normal random
variable.

A (1−α)100% confidence interval is now obtained by solving
for θ in the above equation. This gives

Pθ (θ̂ − zα/2σ < θ < θ̂ + zα/2σ) = 1 − α
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Hypothesis Testing

Point estimation and confidence intervals are useful statisti-
cal inference procedures. Another type of inference that is
frequently used concerns tests of hypotheses.

We label these hypotheses as

H0 ∶ θ ∈ Ω0 against H1 ∶ θ ∈ Ω1

where Ω0 ∩Ω1 = ∅ and Ω1 ⊂ Ω, Ω0 ⊂ Ω

H0 is called the null hypothesis, and H1 the alternative
hypothesis.
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Hypothesis Testing

The decision take H0 or H1 is based on a sample X1, . . . ,Xn

from the distribution of X:

Denote the range of the random sample X = (X1, . . . ,Xn)
by D. A test of H0 against H1 is based on a subset C of D.
This set C is called the critical region and its corresponding
decision rule is

Reject H0 (accept H1) if X ∈ C

Accept H0 (reject H1) if X ∈ Cc
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Hypothesis Testing

Since the decision rule to take H0 or H1 is based on a random
sample, the decision could be wrong.

True State of Nature
Decision H0 is true H1 is true
Reject H0 Type I error Correct Decision
Accept H0 Correct Decision Type II error

In Econometrics, we often refer to statistical significance by
controlling the probability making Type I error, say by set-
ting a probability threshold α.
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Summary

● Basic linear algebra operation.
● Basic set theory.
● Random Variables and Random Vectors.
● Some fundamental distributions: Normal Distribution, Mul-

tivariate Normal Distribution, χ2-Distribution, t-Distribution,
F -Distribution.
● Sampling, Estimation (Estimator), and Statistics.
● Confidence Intervals and Hypothesis Testing.
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