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Homoskedasticity and Heteroskedasticity

• Multivariate linear regression model expressed as follows

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βkXik + ui.

• Conditional homoskedasticity:

E
(
u2i | Xi1, Xi2, · · · , Xik

)
= σ2

• Conditional heteroskedasticity:

E
(
u2i | Xi1, Xi2, · · · , Xik

)
= σ2

i = f(Xi1, Xi2, · · · , Xik)
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Homoskedasticity and Heteroskedasticity

• Recall that under the classical assumptions, we have

E (uu′ | X) =

 E (u21 | X) · · · E (u1un | X)
... . . . ...

E (unu1 | X) · · · E (u2n | X)

 = σ2I

which is crucial for proving many theoretical properties.
• From conditional homoskedasticity to conditional heteroskedas-

ticity, E (uu′ | X) is conditional on X in general, i.e. σ2V (X).
V (X) is finite positive definite matrix.

Yaohan Chen (AHU) Spring, 2025 2 / 18



Issues Associated with Heteroskedasticity

• OLS estimator is not efficient.
• Variance of OLS estimator β̂, Var

(
β̂
)

is not σ2 (X ′X)
−1.

Therefore, hypothesis testing statistic changes.
• For instance, β̂1 for the simple linear regression is

∑
xiYi∑
x2
i

and Var
(
β̂1

)
=

∑
x2
i σ

2
i

(
∑

x2
i )

2 when heteroskedasticity arises.

• β̂1−β1

Sβ̂1

follows student t distribution when conditional ho-
moskedasticity holds, where Sβ̂1

is the estimation of stan-

dard deviation of of β̂1, i.e.
√

Var
(
β̂1

)
.
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Issues Associated with Heteroskedasticity

• Besides, for prediction,

Ŷ0 − E (Y0)

σ̂

√
X0 (X

′X)
−1

X ′
0

∼ t(n− k − 1)

which is the result used for constructing prediction confi-
dence interval. This result holds when homoskedasticity
holds BUT changes when heteroskedasticity arises.

• Heteroskedasticity also affects the prediction of the linear
regression models based on OLS.
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Testing for Heteroskedasticity

• Testing for heteroskedasticity can be equivalently understood
as testing for homoskedasticity. That is,

H0 : E
(
u2i | Xi

)
= σ2 versus H1: not H0.

where Xi = (1, Xi1, Xi2, · · · , Xik)
′.

• Breusch-Pagan LM Test. For the established multivariate
linear regression model, we may consider following auxiliary
regression

u2i = δ0 + δ1Xi1 + δ2Xi2 + · · ·+ δkXik + εi

and use the e2i (squared residuals from the original regression)
as the proxy for u2i .
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Testing for Heteroskedasticity

• Under H0, one should expect

H0 : δ1 = δ2 = · · · = δk = 0.

• It can be shown (Breusch and Pagan, 1979, ECMA; Koenker
and Bassett, 1982, ECMA) that under H0 we have test
statistics

Fn =
R2

e2/k(
1−R2

e2

)
/(n− k − 1)

∼ F (k, n− k − 1)

LMn = nR2
e2 ∼ χ2(k)

where R2
e2 refers to the R2 of the auxiliary regression.
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Testing for Heteroskedasticity (∗)

• Under H0 : E (u2i | X i) = σ2, recall the large sample prop-
erties of OLS when

P limX ′X/n = Q or 1

n

n∑
i=1

X iX
′
i

p−→ Q

√
n(β̂ − β)

d−→ N
(
0, σ2Q−1

)
= N

(
0,Q−1 σ2Q Q−1

)
,

• But alternatively when heteroskedasticity arises, one should
expect √

n
(
β̂ − β

)
d−→ N

(
0,Q−1 V Q−1

)
where

V ≡ E
(
X iX

′
iu

2
i

)
.
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Testing for Heteroskedasticity (∗)

• White’s Test is inspired by comparing σ2Q and V . Under
H0, one should expect σ2Q = V .

• Recall that

σ̂2 1

n

n∑
i=1

X iX
′
i

p−→ σ2Q and 1

n

n∑
i=1

X iX
′
ie

2
i

p−→ V

where σ̂2 = 1
n−k−1

∑n
i=1 e

2
i and ei refers to the residual cor-

responding to multivariate regression model with k non-
constant explanatory variables.
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Testing for Heteroskedasticity (∗)

• Consequently, under H0,

1

n

n∑
i=1

X iX
′
ie

2
i−σ̂2 1

n

n∑
i=1

X iX
′
i =

1

n

n∑
i=1

(
e2i − σ̂2

)
X iX

′
i

p−→ 0

which is equivalent to the claim that

cn ≡ 1

n

n∑
i=1

(
e2i − σ̂2

)
ψi

p−→ 0

where ψi denotes a vector collecting unique and noncon-
stant elements of X iX

′
i.
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Testing for Heteroskedasticity (∗)

• White (1980, ECMA) shows that under some conditions
appropriate for a CLT to be applicable, one would expect
that √

ncn
d−→ N(0, C)

where C is the asymptotic variance of
√
ncn. Furthermore,

Tn,Ĉ ≡ nc′nĈ
−1cn

d−→ χ2(p),

where Ĉ is a consistent estimator for C. p denotes the
dimension of cn.
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Testing for Heteroskedasticity (∗)

• White (1980) shows that for a certain choice of Ĉ, Tn,Ĉ
can be calculated as nR2

e2 , where R2
e2 refers to the R2 of

the auxiliary regression of e2i on a constant and ψi, i.e.,

Tn = nR2
e2 .

• Under H0, we have

Tn = nR2
e2

d−→ χ2(p).
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Testing for Heteroskedasticity

• Suppose Xi = (1, Xi1, Xi2)
′ and we have following regression

model
Yi = β0 + β1Xi1 + β2Xi2 + ui.

Then,  1 Xi1 Xi2

Xi1 X2
i1 Xi1Xi2

Xi2 Xi1Xi2 X2
i2

 .

• The auxiliary regression is constructed as

e2i = δ0 + δ1Xi1 + δ2Xi2 + δ3X
2
i1 + δ4X

2
i2 + δ5Xi1Xi2 + εi.

• Reject H0 if nR2
e2 > χ2(p).
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Remedies for Heteroskedasticity

• E (uu′ | X) = σ2V (X) conditional on X allows for het-
eroskedasticity.

• For linear regression model under heteroskedasticity

Y = Xβ +u , E (u | X) = 0 , E (uu′ | X) = σ2V (X).

Pre-multiplying both sides by C yields

CY = CXβ + Cu

and note that Var (Cu) = σ2I if [V (X)]−1 = C ′C.
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Remedies for Heteroskedasticity

• If we define CY as Y ∗, CX as X∗, and Cu as u∗, then
the transformed linear regression model

Y ∗ = X∗β + u∗

satisfy the classical assumptions.
• OLS estimator for β is

β̂
∗

= (X∗′X∗)
−1

X∗′Y ∗

= (X ′C ′CX)
−1

X ′C ′CY

=
{
X ′ [V (X)]−1X

}−1
X ′ [V (X)]−1 Y

≡ β̂GLS (Generalized Least Square Estimator).
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Generalized Least Square Estimator

• Unbiasedness. E
(
β̂GLS | X

)
= β.

• Variance-covariance matrix.

Var
(
β̂GLS | X

)
= σ2

(
X ′ [V (X)]−1X

)−1
.

• β̂GLS is BLUE estimator for linear regression model with
heteroskedasticity.

• Unbiasedness of σ̂2∗. E (σ̂2∗ | X) = σ2, where

σ̂2∗ =
1

n− k − 1
e∗′e∗, e∗ = Y ∗ −X∗β̂GLS.

• Orthogonality. E
[(

β̂GLS − β
)
e∗′

]
= 0.
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More about Generalized Least Square Estimator

• In practice, V (X) is generally unknown so that β̂GLS is

usually infeasible. If one can consistently estimate V̂ (X),

then we can use the feasible GLS estimator (FGLS)

β̂FGLS ≡
(
X ′

[
V̂ (X)

]−1

X

)−1

X ′
[
V̂ (X)

]−1

Y .

• GLS is of more theoretical analysis values rather than prac-

tical values.
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Heteroskedasticity-Consistent Standard Errors

• Recall that

√
n
(
β̂ − β

)
d−→ N

(
0,Q−1V Q−1

)
where Q−1V Q−1 denotes the asymptotic variance (variance-
covariance) matrix of

√
nβ̂, i.e.

avar
(√

nβ̂
)
= Q−1V Q−1.

• Heteroskedasticity mainly causes problems through vari-
ance. For large sample, we consider the consistent estima-
tor of avar

(√
nβ̂

)
.
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Heteroskedasticity-Consistent Standard Errors

• White (1980) proves that under the regular conditions, for
OLS estimator β̂,

âvar(
√
nβ̂) = Q̂

−1
V̂ Q̂

−1 p−→ Q−1V Q−1

where
Q̂ ≡ 1

n
X ′X V̂ ≡ 1

n

n∑
i=1

X iX
′
ie

2
i .

and X i as a column vector denote transpose of the ith row
of X.

• âvar(
√
nβ̂) = Q̂

−1
V̂ Q̂

−1 is called the heteroskedasticity-
consistent standard variance (variance-covariance) matrix
estimator.
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