Homework 3

1. Suppose that for simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

where $E(u_i) = 0$.

- (a) Show that $\operatorname{Cov}(X_i, u_i) \neq 0 \Leftrightarrow \operatorname{E}(X_i u_i) \neq 0$.
- (b) Suppose that we have found an instrument variable Z for X, write down the IV estimator for β_0 and β_1 respectively using Z.
- (c) If we first run a regression with X on Z and hence have $\hat{X}_i = \hat{\alpha}_0 + \hat{\alpha}_1 Z_i$, where $\hat{\alpha}_0$ and $\hat{\alpha}_1$ refers to the corresponding OLS estimator. Then we run the regression with Y on \hat{X} such that $Y_i = \beta_0 + \beta_1 \hat{X}_i + u_i$. If denote the corresponding OLS estimator by $\tilde{\beta}_0$ and $\tilde{\beta}_1$ respectively, show that $\tilde{\beta}_0$ and $\tilde{\beta}_1$ is equal to the IV estimator we obtained in (b).
- 2. A researcher is investigating the effect of income on family size in rural China. He considers the following model

$$Y = \beta_0 + \beta_1 X + u$$

where Y is the family size, X is the family income, and u is the classical stochastic error term that is homoskedastic, "serially" uncorrelated, and uncorrelated with X. Due to data confidentiality, the researcher can only obtain data that come from a survey of G villages but include only village average family size and village average income. However, he does know the number of families (n_g) sampled in village g for $g = 1, \ldots, G$.

- (a) The researcher obtains the OLS estimator $(\hat{\beta}_{0,OLS}, \hat{\beta}_{1,OLS})$ of (β_0, β_1) using the averaged data. What are the consequences if he uses the conventional standard error to make inference on β_1 .
- (b) Propose an alternative method to estimate (β_0, β_1) , and explain why the alternative estimator is better than the OLS method in (a).
- 3. Consider the following linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

where $\{u_i\}$ is IID, $E(u_i | X_i) = 0$ and $Var(u_i | X_i) = \sigma_u^2$. Suppose that Y_i is measured with error so that the data used in the regression is \tilde{Y}_i , where

$$\tilde{Y}_i = Y_i + e_i$$

and e_i is a measurement error which is assumed to be IID mean 0 and variance σ_e^2 and independent of X_i and u_i . Consider following population regression

$$\tilde{Y}_i = \beta_0 + \beta_1 X_i + v_i$$

where v_i is the corresponding stochastic error when using mis-measured dependent variable.

- (a) Are the OLS estimators still unbiased and consistent? Why or why not?
- (b) Can the confidence intervals be constructed in the usual way?
- (c) Evaluate the statement: measurement error in the regressor Y_i is a serious problem whereas measurement error in X_i is not.
- (d) What parts of your regression output will be affected by the measurement error in Y_i .