
Solutions to Homework 3

1. (a) Note that
Cov (Xi, ui) = E (Xiui) −E (Xi)E (ui)

and given the condition E (ui) = 0, then Cov (Xi, ui) ≠ 0⇔ E (Xiui) ≠ 0.

(b) Denote the IV estimator for β0 and β1 by β̂0,IV and β̂1,IV respectively, then using the
condition that Z as the instrument variable for X should have E (Ziui) = 0. Therefore,
moment conditions E (ui) and E (Xiui) = 0 imply the sample moment condition

1

n
∑(Yi − β̂0,IV − β̂1,IV Xi) = 0,

1

n
∑Zi (Yi − β̂0,IV − β̂1,IV Xi) = 0,

which also suggests the corresponding normal system of equations

∑Yi = nβ̂0,IV + β̂1,IV ∑Xi

∑ZiYi = β̂0,IV ∑Zi + β̂1,IV ∑ZiXi.

We can then solve β̂0,IV and β̂1,IV from the normal system of equations as

β̂1,IV =
∑ ziyi

∑ zixi
, β̂0,IV = Ȳ − β̂1,IV X̄.

where zi = Zi − Z̄ and yi = Yi − Ȳ .

(c) For this two step least square procedure, we have

β̃1 =
∑ x̂iyi

∑ x̂2i

=
∑(α̂0 + α̂1Zi − ¯̂

X) yi

∑(α̂0 + α̂1Zi − ¯̂
X) (Xi − ei − X̄)

= ∑(α̂0 + α̂1Zi − α̂0 − α̂1Z̄) yi
∑(α̂0 + α̂1Zi − α̂0 − α̂1Z̄) (Xi − ei − X̄)

= ∑ α̂1ziyi

∑ α̂1zixi −∑ α̂1ziei
= ∑ ziyi

∑ zixi
= β̂1,IV
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where ¯̂
X = 1

n ∑ X̂i, x̂i = X̂i − ¯̂
X, xi =Xi − X̄, yi = Yi − Ȳ , and zi = Zi − Z̄. Besides, ei refers

to the corresponding residual when regressing X on Z and hence ∑ ziei = 0. Given the
expression for β̃1, it is possible to solve β̃0 as

β̃0 = Ȳ − β̃1 ¯̂
X = Ȳ − β̂1,IV X̄ = β̂0,IV ,

where we have used the fact that from the first step least square routine 1
n ∑Xi = 1

n ∑ X̂i.

2. (a) For the averaged data, we can run the following regression model

Ȳg = β0 + β1X̄g + ūg

where Ȳg signifies the average of Y ’s within the gth village, and X̄g and ūg are similarly
defined. Under the classical assumptions, u’s are serially correlated and homoskedastic
with variance σ2, implying that ūg are heteroskedastic with variance σ2/ng. As a
consequence, the conventional standard error is inconsistent and inference based on it
will be invalid and misleading.

(b) Multiplying √ng on both sides of Ȳg = β0 + β1X̄g + ūg yields

Ỹg = β0 + β1X̃g + ũg

where Ỹg = √ngȲg, X̃g = √ngX̄g, ũg = √ngūg. Then Var (ũg) = ng Var (ūg) = σ2 implying
that ũg is homoskedastic and the corresponding OLS estimator in Ỹg = β0 + β1X̃g + ũg is
BLUE and therefore more efficient than the OLS estimator in Ȳg = β0 + β1X̄g + ūg.

3. (a) Since now the error term is now given by vi = ui + ei. {ui} is IID, E (ui ∣Xi) = 0 and
Var (ui ∣Xi) = σ2

u. ei is independent of ui and Xi, we have

E (vi ∣Xi) = E (ei + ui ∣Xi) = 0

and
σ2
v ≡ Var (vi ∣Xi) = Var (ei ∣Xi) +Var (ui ∣Xi) = σ2

e + σ2
u.

Let β = (β0, β1)′, the OLS estimator based on {Ỹi} is given by

β̂ = (X ′X)′X ′Ỹ = β +X ′v

where we use v to denote {vi}. Given the structure of vi, we have E (X ′v ∣X) = 0 and
(1/n)X ′v pÐ→ 0, therefore β̂ is unbiased and consistent.

(b) Yes. Note that we do not have conditional heteroskedasticity and we have IID observations
here. So we can construct the confidence interval as usual — there is no need to consider
the White estimator for the s.e. of the OLS estimator.
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(c) This is a true statement. Measurement error in the regressor Xi leads to inconsistent
results in general. Measurement error in Yi does not affect consistency, as long as the
measurement error is not correlated with the regressors.

(d) Because vi has a greater (conditional) variance than ui, the standard errors of the OLS
estimator β̂ would be bigger than the case without measurement error in the dependent
variable. The confidence intervals would be wider as a result. The coefficient estimates
should not change too much because the estimators are consistent. In addition, the R2

will be smaller, reflecting the larger variance of the regression errors.
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