
Solutions to Homework 2

2. (a) No. The regression in (1) cannot be estimated by the OLS whereas the regressions in (2),
and (2) can be estimated. For the regression in (1), the regressors form a matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 D11 D21

1 D12 D22

⋮ ⋮ ⋮

1 D1n D2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which has rank 2 < k = 3 the number of regressors. This occurs because D1i +D2i = 1 for
any i This is the case of perfect multicollinearity. For the other two regressions, we don’t
face this problem and thus they can be estimated by the OLS.

(b) Both regressions (2) and (3) can be used in practice. None is more general than the
other.
Note that E (Y ∣D1 = 1,D2 = 0) = β1 and E (Y ∣D1 = 0,D2 = 1) = β2. They estimate the
expected income for the male (β1) and the expected return for the female β2 respectively.
Note that E (Y ∣D1 = 1) = γ1 + µ and E (Y ∣D1 = 0) = µ in regression (3). They estimate
the expected income for the male and and the expected income for the female (γ1)
respectively.
So the two regressions are equivalent in that once we know the OLS result from one
regression, we can easily recover the OLS result from the other.

(c) We only need to find the estimator of the coefficients in (2) and (3). From the answer to
(b), we know that the OLS estimator in regression (2) is given by

β̂1 = Ȳmale , β̂2 = Ȳfemale ,

where Ȳmale is the average income of the n1 males and Ȳfemale is the average income of
the n2 females. This is because

β̂ = (X ′X)−1X ′Y =
⎛
⎜
⎝

n1 0

0 n2

⎞
⎟
⎠

−1

( ∑
n1
i=1 Yi

∑n1+n2
i=n1+1

Yi
) = ( Ȳmale

Ȳfemale
).
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3. (a) This is a constraint minimization problem with q linear constraints given by Rβ = r. By
the constraint optimization theory, the restricted least squares solution β̂∗ solves the
minimization of the Lagrangian.

(b) By taking the first order derivatives with respect to β and λ and set them equal to 0,
then

∂L(β̂∗,λ)
∂β

= −2X ′Y + 2X ′Xβ̂∗ +R′λ = 0 (1)

∂L(β̂∗,λ)
∂λ

= Rβ̂∗ − r = 0 (2)

Rearranging (1) gives

β̂∗ = (X ′X)
−1

X ′Y − 1

2
(X ′X)−1R′λ = β̂ − 1

2
(X ′X)−1R′λ (3)

from (2) and (3), we have

r = Rβ̂∗ = Rβ̂ − 1

2
R (X ′X)−1R′λ.

Note that R (X ′X)−1R′ is invertible, we have

λ = 2 [R (X ′X)−1R′]
−1
(Rβ̂ − r) (4)

By plugging (4) into (3) we have

β̂∗ = β̂ − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1
(Rβ̂ − r). (5)

(c) Under the null restriction Rβ = r

β̂∗ −β = (β̂ −β) − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1
(Rβ̂ −Rβ)

= {Ik+1 − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1

R}(β̂ −β)

= {Ik+1 − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1

R}(X ′X)−1X ′u

(d) Under the null restriction and the classical assumptions, conditional on X, β̂∗ −β is a
linear combination of multivariate normal distribution (u ∣X ∼ N (0, σ2X ′X) here ), so

β̂∗ −β ∣X ∼ N (0, σ2Ω)
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where

Ω =σ2 {Ik+1 − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1

R}(X ′X)−1X ′X (X ′X)−1

× {Ik+1 − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1

R}

=σ2 {Ik+1 − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1

R}(X ′X)−1 {Ik+1 − (X ′X)
−1

R′ [R (X ′X)−1R′]
−1

R}
′

=σ2 {(X ′X)−1 − (X ′X)−1R′ [R (X ′X)−1R′]
−1

R (X ′X)−1}
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