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1. Introduction

After decades of methodological development following Ashenfelter and Card (1985), causal

inference methods, such as difference-in-differences (DiD), are now widely adopted in ap-

plied empirical research. Potential outcome setup (Robins, 1986; Imbens and Rubin, 2015)

is most widely-used framework for conducting causal inference. In the traditional poten-

tial outcome framework, where a binary indicator assigns units to either the treated or

control group, most causal inference methods focus on estimating the effect of the treat-

ment on a single outcome, by separating this effect from common trends shared by both

groups. Among all the methods in the literature, difference-in-differences (DiD) is a rep-

resentative approach, which is essentially a linear approach for modeling the average (or

aggregate) causal effect on a single outcome. However, after decades of development in

causal inference methodologies, the academic community has realized that conventional

methods—focusing on the mean effect (i.e., mean or aggregate effect) of the treatment on

a single outcome—are somewhat limited. By contrast, a more comprehensive evaluation

of a policy—one that can reveal how multiple outcomes are jointly affected by the pol-

icy—would be of greater interest (Fernández-Val et al., 2025). More importantly, within

the setting featuring multiple outcomes that are potentially affected by the treatment, we

might be interested not only in how each of the outcomes is affected by the treatment, but

also in how the relationship between the outcomes is affected by the treatment, which we

refer to as the dependence structure in this paper. Modeling multiple outcomes in causal

inference has become an area of growing interest among researchers because it aligns with

the natural intuition that—without a model capturing how other variables would change

due to a policy change—the predictions based solely on a specific policy variable, while

holding other variables constant, are likely to be misleading. As Athey (2025) suggests,

modeling multiple outcomes is a crucial and hence promising future direction in causal in-

ference. Against this backdrop, the primary objective of this paper is to develop a modeling
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framework in which policy intervention effects are characterized as distributional effects, as

in Gunsilius (2023) and William, Gunsilius, and Rigollet (2024), among others, contrasting

with the traditional focus on mean effects. Building on this, we aim to model and estimate

how the dependence structure among multiple outcomes is affected by the policy inter-

vention—that is, the causal effects on the relationships between outcomes. However, it is

worthwhile pointing out that the objective of this paper — modeling multiple outcomes

— differs from the objective in the setting of modeling multivalued treatments. Briefly,

in settings with multivalued treatments—where the treatment variable may assume more

than two distinct values—treatment effects generally depend on the counterfactual alter-

natives that treated individuals would have chosen in the absence of treatment (Heckman

et al., 2000). By contrast, the multiple-outcome framework analyzed in this paper is prin-

cipally concerned with two objectives: (i) the effect of the treatment on each marginal

outcome, and (ii) the effect of the treatment on the joint distribution of outcomes and on

the dependence structure that links them.

Copula methods are widely used techniques for modeling the dependence structure of

multiple outcomes and thus serve as fundamental tools for the main objectives of this

paper. A copula is a joint distribution on [0, 1]M (M stands for the dimension), whose

marginals are uniform on [0, 1]. When the marginals are continuous the copula is unique.

With copula methods, we can split the marginals and dependence between the random

variables. Specifically, on one side, we have the marginals and on the other side, we can

use copula to link the marginals and model the dependence structure (Joe, 2014). Sklar’s

(1959) theorem lays the theoretical foundation and says that any multivariate distribution

can be decomposed into its marginal distributions and a copula that ties them together.

Because of their flexibility, copula methods have gained widespread popularity in both

statistics and econometrics: see Nelsen (2010), Fan and Patton (2014), and Joe (2014) for

nice and comprehensive reviews.
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In this paper, we use Gaussian CDF as the link function that associates with the

conditional transformation method borrowed from the distributional regression modeling

framework (see Arellano and Bonhomme, 2017; Chen et al., 2024; Chen, Liu, and Zhang,

2025; Chernozhukov, Fernández-Val, and Luo, 2023; Chernozhukov et al., 2025; Spady and

Stouli, 2025, and references therein) to establish a framework for quantitatively investigat-

ing how the dependence structure of multiple outcomes are affected by the corresponding

exogenous interventions. Based on this, a Bayesian pseudo-likelihood method is established

to estimate and conduct inference on the copula parameters that characterize the depen-

dence structure. The estimation method proposed in this paper is closely related to the

two-stage method for estimating parameters that characterize the dependence structure,

initially proposed in Genest, Ghoudi, and Rivest (1995), which is also currently known as

the method of inference function of margins (IFM) (Joe, 2005). This two-stage method is

popular partly because it naturally reflects the copula principle of modeling the dependence

structure separately from the marginal distributions and is straightforward for implementa-

tion. Set in this two-stage estimation framework, one readily available estimation strategy

for the dependence parameters is maximum likelihood estimation method (MLE). Esti-

mators obtained from the two-stage methods are well-behaved for continuous data and

theoretically involve a minor loss of efficiency. However, even when the corresponding

likelihood has an analytic form and optimization can be used to obtain an estimator, the

associated large-sample theory remains comparatively complicated, making it difficult to

incorporate into inference for parameters of the dependence structure in causal-inference

settings — for example, when constructing confidence intervals for the estimated depen-

dence parameters corresponding to both treated group and control group. By contrast, the

advent of modern Bayesian methods, including the Markov Chain Monte Carlo (MCMC)

method and variational Bayes (VB) method, facilitates the inference based on posterior

analysis. Under regularity conditions, the Bernstein–von Mises (BvM hereafter) theorem
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implies that the posterior is asymptotically equivalent (in total variation) to the MLE’s

asymptotic normal distribution. Bayesian posterior inference provides an approximation

to maximum-likelihood-based inference and, under standard regularity conditions (by the

BvM theorem), yields posterior credible intervals that coincide asymptotically with fre-

quentist confidence intervals. Accordingly, the Bayesian methods we propose can obviate

the need to compute complex variance estimators required for frequentist inference, while

producing asymptotically equivalent frequentist results under the conditions of the BvM

theorem. Relatedly, theoretical work has established semiparametric Bernstein–von Mises

theorems that justify the use of Bayesian methods for estimation and inference for treat-

ment effects in causal inference (Ray and van der Vaart, 2020; Breunig, Liu, and Yu, 2025).

There has been vast literature on applying Bayesian analysis for estimation and inference

within the copula modeling framework. For instance, Pitt, Chan, and Kohn (2006) develop

an estimation procedure for multivariate normal copula by modeling the marginal distri-

butions via specified parametric families. Smith and Khaled (2012) establish a Bayesian

estimation strategy for copula model with discrete margins and Smith and Klein (2021)

comprehensively discuss the how the Hamiltonian Monte Carlo (HMC) method and VB

methods estimation and inference of copula scalable to the high dimensions. Literature of

this strand also includes the application of Bayesian in complete distributional regression

as studied in Murray et al. (2013) and Klein, Kneib, and Lang (2015), among others. We

employ standard MCMC with carefully chosen Gaussian random-walk proposals based on

auxiliary optimization. We find that our method is easy to implement and readily extensi-

ble to settings involving more complex dependence structures, where both estimation and

inference of the dependence parameters are required.

The paper proceeds as follows: Section 2 establishes the model setup and discusses how

the transformation method from the distribution regression framework applies in integrat-

ing into the copula methods for modeling dependence structure of multiple outcomes in a
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canonical causal inference setting. Section 3 details the Bayesian estimation and inference

methods and Section 4 covers the corresponding simulations for demonstrating efficacy

of the proposed method. Section 5 applies the proposed method to study how the de-

pendence structure of part-time and full-time employment is affected by increasing the

minimum wage. Section 6 concludes.

2. Model Setup

We consider a standard DiD design with 2 periods, T ∈ {0, 1}, and 2 groups, G ∈ {0, 1}

in which a binary treatment, D ∈ {0, 1}, assigned to the treatment group with G =

1 in the second period T = 1. There are M multiple observed outcomes collected in

Y =
(
Y (1), . . . , Y (M)

)⊤
. According to Imai and Li (2023), the observed outcomes are

Y = Y (D) = DY (1) + (1−D)Y (0), where Y (1) =
(
Y (1)(1), . . . , Y (M)(1)

)⊤
and Y (0) =(

Y (1)(0), . . . , Y (M)(0)
)⊤

refers to the potential outcomes. Given this specification, the

distribution of Y is the conditional distribution FY |G,T (y | g, t). The treatment refers to a

shared event that follows a block-adoption design. When T = 0, since no treatments are

assigned to both groups, Y = Y (0), and accordingly for G = 0, T = 0 and G = 1, T = 0,

we can identify distributions from the observed outcomes such that

FY |G,T (y | 0, 0) = FY (0)|G,T (y | 0, 0), (1)

FY |G,T (y | 1, 0) = FY (0)|G,T (y | 1, 0). (2)

When T = 1, since treatments are only assigned to the treatment group (G = 1), and

accordingly for G = 0, T = 1 and G = 1, T = 1, we can identify distributions from the

observed outcomes such that

FY |G,T (y | 0, 1) = FY (0)|G,T (y | 0, 1), (3)

FY |G,T (y | 1, 1) = FY (1)|G,T (y | 1, 1). (4)
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The distribution of potential outcomes in the block-adoption design can be further ex-

plained using Table 1.

Table 1: Distributions in Block-adoption Design

(a) Observed

T

G 0 1

0 FY (0)|G,T (y | 0, 0) FY (0)|G,T (y | 0, 1)

1 FY (0)|G,T (y | 1, 0) FY (1)|G,T (y | 1, 1)

(b) Counterfactual

T

G 0 1

0 FY (0)|G,T (y | 0, 0) FY (0)|G,T (y | 0, 1)

1 FY (0)|G,T (y | 1, 0) FY (0)|G,T (y | 1, 1)

Each entry in (a) above corresponds to a distribution that can be identified from the

observed outcomes for each case. By contrast, each entry in (b) corresponds to the counter-

factual distribution. In fact, by comparing (a) and (b), it is evident that, for the non-treated

group, the distributions that can be identified from the observed outcomes are identical to

the corresponding counterfactual distribution, i.e., the distributions of Y (0), which remains

unidentified in the observed outcomes but serves as the target of interest: FY (0)|G,T (y | 1, 1)

(the (1, 1) entry in (b)), the distribution of the potential outcomes under the non-treated

status when G = 1 and T = 1. In other words, if one can identify FY (0)|G,T (y | 1, 1) under

certain regular conditions, then the treatment effect can also be identified by comparing

FY (1)|G,T (y | 1, 1) and FY (0)|G,T (y | 1, 1). In this paper, we show that we can first model the

corresponding marginal univariate distributions and then link these marginal distributions

via copula methods in combination with the monotonic transformation in the distributional

regression to model the dependence structure captured in FY |G,T (y | g, t). Specifically, we

use FY (m)|G,T (y
(m) | g, t) to denote the univariate marginal distribution of the m-th outcome

(1 ⩽ m ⩽ M). Then we apply the monotonic transformation the distributional regression

method as studied in Fernández-Val et al. (2025) to model each FY (m)|G,T (y
(m) | g, t). We

proceed to detail the modeling framework in the following discussion.

For arbitrary (g, t) taking value in (0, 0), (1, 0), (0, 1) and (1, 1), we follow Fernández-
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Val et al. (2025) to model the distribution of the potential outcome Y (m)(0) under the

non-treated status using the following distributional regression approach

FY (m)(0)|G,T

(
y(m) | g, t

)
= Λ

(
α(y(m)) + β(y(m))t+ γ(y(m))g + δ(y(m))gt

)
, y(m) ∈ R, (5)

where Λ is an invertible CDF. Λ only plays the role of a link function and hence (5) implies

no restrictive parametric assumptions about the underlying distribution of Y (m)(0) | G, T .

In this paper, we choose Λ as the univariate standard Gaussian CDF as it naturally leads

to Gaussian copula representation. When choosing the Gaussian CDF as the link function

Λ, it is also referred to as the local Gaussian representation (LGR) in Chernozhukov,

Fernández-Val, and Luo (2023). Given the monotonic property of CDF, functionals in (5)

can be decomposed as the quantile discrepancy respectively as follows,

α(y(m)) = Λ−1
(
FY (m)(0)|G,T (y

(m) | 0, 0)
)

(6)

β(y(m)) = Λ−1
(
FY (m)(0)|G,T (y

(m) | 0, 1)
)
− Λ−1

(
FY (m)(0)|G,T (y

(m) | 0, 0)
)

(7)

γ(y(m)) = Λ−1
(
FY (m)(0)|G,T (y

(m) | 1, 0)
)
− Λ−1

(
FY (m)(0)|G,T (y

(m) | 0, 0)
)

(8)

δ(y(m)) = Λ−1
(
FY (m)(0)|G,T (y

(m) | 1, 1)
)
− Λ−1

(
FY (m)(0)|G,T (y

(m) | 1, 0)
)

(9)

−
[
Λ−1

(
FY (m)(0)|G,T (y

(m) | 0, 1)
)
− Λ−1

(
FY (m)(0)|G,T (y

(m) | 0, 0)
)]

. (10)

We follow the extant literature and impose following assumptions for identification.

Assumption 1. δ(y(m)) = 0 for all 1 ⩽ m ⩽ M . Note that this δ(y(m)) = 0 condition

can also be interpreted as the parallel trend assumption as in the conventional difference-

in-difference literature.

Assumption 2. The potential outcomes Y (0) are contained within the support of the ob-

served outcomes Y . Since for (G = 0, T = 0), (G = 0, T = 1), and (G = 1, T = 0) we have

Y = Y (0) = Y (1), this assumption can be equivalent expressed as follows

(Y (0) | G = 1, T = 1) ⊆ (Y (0) | G = 0, T = 1) ∪ (Y (0) | G = 1, T = 0) ∪ (Y (0) | G = 0, T = 0).

(11)
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With this decomposition and the assumptions, we can show that δ(y(m)) = 0 can serve

as a sufficient condition to identify FY (m)(0)|G,T (y
(m) | 1, 1) from distributions that can be

identified from the observed outcomes (Fernández-Val et al., 2025). In fact, δ(y(m)) = 0

and (5) jointly imply that,

FY (m)(0)|G,T (y
(m) | 1, 1)

= Λ
(
α(y(m)) + β(y(m)) + γ(y(m))

)
= Λ

[
Λ−1

(
FY (m)(0)|G,T (y

(m) | 1, 0)
)
+ Λ−1

(
FY (m)(0)|G,T (y

(m) | 0, 1)
)
−

Λ−1
(
FY (m)(0)|G,T (y

(m) | 0, 0)
)]

(12)

where FY (m)(0)|G,T (y
(m) | 1, 0), FY (m)(0)|G,T (y

(m) | 0, 1), and FY (m)(0)|G,T (y
(m) | 0, 0) can be

identified from the observed outcomes and estimated via nonparametric methods. Con-

ventional DiD method mainly focus on a single response outcome, namely M = 1. When

M ⩾ 2, i.e., when multiple response outcomes are exposed to treatment, we aim to model

the dependence structure across outcomes and to quantify how this dependence changes

under the intervention. We discuss the methods we propose for this target in the following

discussion.

3. Modeling Dependence Structure

To model the dependence structure of multiple outcomes, we use Gaussian copula methods

in combination with the transformation as in (5). For ease of notation, we simply use Y (m)

to denote the observed data of the m-th potential outcomes (Y (m)(1) or Y (m)(0)). Specif-

ically, for each m, we define z(m) = Φ−1
1

(
FY (m)|G,T (y

(m) | g, t)
)
and z =

(
z(1), . . . , z(M)

)⊤
.1

Φ1(·) denotes the CDF of the univariate standard Gaussian distribution. This transfor-

mation can be visually demonstrated in Figure 1. For the Gaussian copula structure, we

use R(g, t) to denote the correlation matrix of the Gaussian copula function conditional

1For ease of notation, we suppress the dependency of z(m) on the (g, t) pairs.
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0.5

1

z(m) | g, t y(m) | g, t

CDF

Φ1

FY (m)|G,T

Figure 1: Standard Gaussian distribution as link function.

on G = g and T = t. R(g, t) collects the measure of dependence structure of multiple

outcomes, which degenerates to a scalar ρ(g, t) when M = 2. One main target of this

paper is to estimate and making inference of R(1, 1) for the ex post observed outcomes of

the treated group, denoted by RY (1)(1, 1), and R(1, 1) for the potential outcomes Y (0),

denoted byRY (0)(1, 1). Comparison ofRY (1)(1, 1) andRY (0)(1, 1) implies treatment effects

on the dependence structure of multiple outcomes.

By using the Gaussian copula as a linking method and assuming that for each m,

FY (m)|G,T (y
(m) | g, t) is differentiable with fY (m)|G,T

(
y(m) | g, t

)
as the associated PDF, we

can derive (pseudo) likelihood function in PDF form as follows,

∂MFY |G,T (y
(1), . . . , y(M) | g, t)

∂y(1), . . . , ∂y(M)

=
1√

det (R(g, t))
exp

{
−1

2
z⊤ (

[R(g, t)]−1 − IM
)
z

} M∏
m=1

fY (m)|G,T

(
y(m) | g, t

)
. (13)

The detailed derivations of (13) are summarized in Appendix A.

Given (13) and the i.i.d. assumptions with sample size denoted by n, we obtain pseudo
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log-likelihood function by taking logarithm of (13),

L =
n∑

i=1

{
−1

2
ln (det (R(g, t)))− 1

2
z⊤
i

(
[R(g, t)]−1 − IM

)
zi

}
︸ ︷︷ ︸

part I

+

n∑
i=1

{
M∑

m=1

ln fY (m)|G,T

(
y
(m)
i | g, t

)}
︸ ︷︷ ︸

part II

. (14)

Remark 1. It should be emphasized that the sample size varies across different (g, t)-pairs.

In our model setup, we denote the sample sizes as n0,0, n1,0, n0,1, and n1,1 for all possible

(g, t)-pairs. Typically, the notation n refers to n(1) = n1,1 in the observed universe or to

n(0) = n0,0 + n1,0 + n0,1 in the counterfactual universe.

Decomposition as in (14) is informative for designing estimation and inference strategy.

This pseudo log-likelihood function contains two parts and only part I contain parameters

modeling the dependence structure R(g, t). The two-stage estimation strategy proposed in

Genest, Ghoudi, and Rivest (1995) models the marginal distributions nonparametrically

using empirical distribution functions in the first stage; in the second stage the original

data are transformed, via a link function and the empirical marginal distributions, into

pseudo-data zi, and then parameters that model the dependence structure are estimated

via Part I. This estimation strategy is also referred to as the inference for margin (IFM)

method. Genest, Ghoudi, and Rivest (1995) and Joe (2005) show that under some regular

conditions, the copula dependence parameters, namely the RY (0)(1, 1) and RY (1)(1, 1) in

our model, can be consistently estimated using the IFM estimation procedure with maxi-

mum likelihood estimation (MLE) method adopted in the second stage. Although the MLE

within the IFM procedure can provide consistent estimates, inference is more involved: the

asymptotic distribution typically depends on the Fisher information, which often must be

computed numerically (Genest, Ghoudi, and Rivest, 1995; Joe, 2005), and the variance

estimator required for constructing test statistics, and for that reason constructing confi-

dence intervals in the frequentist setting is more complicated in practice. One alternative
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for making inference with MLE in IFM is bootstrap inference, which is a broadly adopted

inference strategy from the Frequentists’ perspectives, see Fernández-Val et al. (2025).

We retain the two-stage procedure but propose to perform Bayesian posterior analysis

of RY (1)(1, 1) and RY (0)(1, 1) in the second stage, which we refer to as Bayesian IFM. In

the first stage of Bayesian IFM, we follow the convention in semiparametric literature (Hoff,

2007) to scale the empirical CDF as

F̂Y (m)|G,T (y
(m) | g, t) = ng,t

ng,t + 1

1

ng,t

ng,t∑
i=1

1
{
Y

(m)
i ⩽ y(m)

}
, (15)

where 1 {·} denotes an indicator function and ng,t =
∑n

i=1 1 {Gi = g}1 {Ti = t}. This

scaling is to ensure the computational stability. With the scaled marginal empirical CDFs,

we can estimate marginal distribution of Y (m)(1) and Y (m)(0) of the treated group after

the treatment interventions. This is summarized as follows:

� The estimation of marginal distribution of Y (m)(1) after the treatment interventions,

F̂Y (m)(1)|G,T (y
(m) | 1, 1) = n1,1

n1,1 + 1

1

n1,1

n1,1∑
i=1

1
{
Y

(m)
i ⩽ y(m)

}
.

� The estimation of marginal distribution of Y (m)(0) after the treatment interventions,

F̂Y (m)(0)|G,T (y
(m) | 1, 1)

= Λ
[
Λ−1

(
F̂Y (m)(0)|G,T (y

(m) | 1, 0)
)
+ Λ−1

(
F̂Y (m)(0)|G,T (y

(m) | 0, 1)
)
−

Λ−1
(
F̂Y (m)(0)|G,T (y

(m) | 0, 0)
)]

,

where F̂Y (m)(0)|G,T (y
(m) | 1, 0), F̂Y (m)(0)|G,T (y

(m) | 0, 1), and F̂Y (m)(0)|G,T (y
(m) | 0, 0) are

the scaled empirical CDF using (15).

Then, in the second stage we first transform data into pseudo data for each 1 ⩽ m ⩽ M ,

using F̂Y (m)(1)|G,T (y
(m) | 1, 1) and F̂Y (m)(0)|G,T (y

(m) | 1, 1), such that ,

ẑ
(m)
i (1) = Φ−1

1

(
F̂Y (m)(1)|G,T (Y

(m)
i | 1, 1)

)
,

ẑ
(m)
i (0) = Φ−1

1

(
F̂Y (m)(0)|G,T (Y

(m)
i | 1, 1)

)
.
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For clarity, we collect all the transformed pseudo data into vector, that is

ẑi(1) =
(
ẑ
(1)
i (1), . . . , ẑ

(M)
i (1)

)⊤
, ẑi(0) =

(
ẑ
(1)
i (0), . . . , ẑ

(M)
i (0)

)⊤
. (16)

Next in the second stage, with ẑi(1) and ẑi(0), we estimate RY (1)(1, 1) and RY (0)(1, 1)

via MCMC respectively. The pseudo log-likelihood function, as shown in (14), suggests that

the key to modeling the dependence structure of multiple outcomes lies in parameterizing

the correlation matrix R(g, t). In contrast to the methods in Murray et al. (2013) and

Klein, Kneib, and Lang (2015) that parameterize the covariance matrix through Cholesky

decomposition, we use the method in Archakov and Hansen (2021) and Hansen and Luo

(2025) for parameterizing the correlation matrixR(g, t). The main advantage of the method

in Archakov and Hansen (2021) is that it establishes a one-to-one correspondence between

a nonsingular correlation matrix and an unrestricted vector of matching dimension, which

facilitates the construction of joint likelihood based on (14), which is necessary for posterior

analysis. This parameterization has gained popularity in recent literature for its flexibility

and strong theoretical grounding, see the application in Chen, Fei, and Yu (2025) for

modeling a multivariate stochastic volatility model.

Given the structure of Gaussian copula we adopt, it would be of greater interests to

conduct pairwise estimation, i.e. the case when M = 2. For this scenario, RY (1)(1, 1)

degenerates to a 2× 2 matrix  1 ρY (1)(1, 1)

ρY (1)(1, 1) 1

 , (17)

and RY (0)(1, 1) degenerates to a 2× 2 matrix 1 ρY (0)(1, 1)

ρY (0)(1, 1) 1

 , (18)

then it is equivalently to estimate ρY (1)(1, 1) and ρY (0)(1, 1) using the Bayesian IFM method

pairwise to arbitrary pair of multiple outcomes.2 For this reason, we mainly focus on es-

2It is a well-known result that if a random vector is multivariate Gaussian, then any subvector (i.e., any
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timating and making inference of (17) and (18) in the following discussion. To conduct

Bayesian analysis, we choose a uniform prior for ρY (1)(1, 1) and ρY (0)(1, 1) with an inde-

pendent structure, such that the corresponding density function is given by

π
(
ρY (1)(1, 1)

)
= 1

{
ρY (1)(1, 1) ∈ (−1, 1)

}
, π

(
ρY (0)(1, 1)

)
= 1

{
ρY (0)(1, 1) ∈ (−1, 1)

}
.

As pointed in Archakov and Hansen (2021), the parameterization of 2×2 correlation matrix

based on the matrix-logarithm is equivalent to applying the Fisher transformation on the

off-diagonal elements. Accordingly,

ρ̃Y (1)(1, 1) =
1

2
ln

(
1 + ρY (1)(1, 1)

1− ρY (1)(1, 1)

)
∈ R, ρ̃Y (0)(1, 1) =

1

2
ln

(
1 + ρY (1)(1, 1)

1− ρY (0)(1, 1)

)
∈ R.

Given the parameterization, the posterior of ρ̃Y (1)(1, 1) is

p
(
ρ̃Y (1)(1, 1) | {ẑi(1)}n(1)i=1

)
∝

n(1)∏
i=1

p
(
ẑi(1) | ρ̃Y (1)(1, 1)

)
×
[
1− tanh2(ρ̃Y (1)(1, 1))

]
, (19)

with n(1) = n1,1, and the posterior of ρ̃Y (0)(1, 1) is

p
(
ρ̃Y (0)(1, 1) | {ẑi(0)}n(0)i=1

)
∝

n(0)∏
i=1

p
(
ẑi(0) | ρ̃Y (0)(1, 1)

)
×
[
1− tanh2(ρ̃Y (0)(1, 1))

]
, (20)

with n(0) = n1,0 + n0,1 + n0,0. The p
(
ẑi(1) | ρ̃Y (1)(1, 1)

)
and p

(
ẑi(0) | ρ̃Y (0)(1, 1)

)
can

be easily calculated via part I of (14), and we use MCMC to make posterior draws of

ρ̃Y (1)(1, 1) and ρ̃Y (0)(1, 1), and accordingly the posterior draws of ρY (1)(1, 1) and ρY (0)(1, 1).

To prevent poor mixing, we run an auxiliary optimization to identify the posterior mode

and set the Gaussian Metropolis–Hastings random-walk proposal covariance to the negative

inverse Hessian evaluated at the mode (Schorfheide, 2000). Estimation and inference of

ρY (1)(1, 1) and ρY (0)(1, 1), which is our main target, can then be obtained via posterior

sampling. The main advantage of Bayesian IFM is that it obviates the need to compute

complex variance estimators for statistical inference, while retaining the key asymptotic

properties of the maximum likelihood estimator, as we have mentioned previously. We

demonstrate the effectiveness of MCMC sampling in Section 4.

selection of components) is also Gaussian. This result lays the foundation for estimating RY (1)(1, 1) and

RY (0)(1, 1) in a pairwise manner, i.e., estimating ρY (1)(1, 1) and ρY (0)(1, 1).
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4. Simulation

As we have discussed in the estimation procedure previously, the key is to obtain estima-

tion of FY (m)(0)|G,T (y
(m) | 1, 0), FY (m)(0)|G,T (y

(m) | 0, 1), and FY (m)(0)|G,T (y
(m) | 0, 0) for each

m and then identify FY (m)(0)|G,T (y
(m) | 1, 1) using (5). For illustration purpose, we demon-

strate the estimated dependence structure of FY (1)|G,T (y | 1, 1) (distribution of the treated

group, observed) and FY (0)|G,T (y | 1, 1) (distribution of the non-treated group, counterfac-

tual). That is, in the Monte Carlo experiment, we are interested in uncovering the ex post

discrepancy in the dependence structure of multiple outcomes between the treated group

and the control group after the treatment assignments.

We consider the data-generating process (DGP) as follows. We first generate X
(1)
i and

X
(2)
i independently from uniform distribution on [0, 1] and then make Gi = 1 {Xi > 0.5}

and Ti = 1 {Xi > 0.5}. By this construction, we have Di = GiTi as the indicator specifying

whether the i-th unit is exposed to the treatment after the implementation of treatment.

For each unit i, we assume there are M = 2 observed outcomes, that is Y i =
(
Y

(1)
i , Y

(2)
i

)⊤
.

Specifically, we have

Y
(1)
i = Diµ

(1)
treated + (1−Di)µ

(1)
control + ε

(1)
i (Di), (21)

Y
(2)
i = Diµ

(2)
treated + (1−Di)µ

(2)
control + ε

(2)
i (Di) (22)

where εi(Di) =
(
ε
(1)
i (Di), ε

(2)
i (Di)

)⊤
, εi

i.i.d.∼ N (0,Σ(Di)). For the variance-covariance

matrix Σ(Di), we specify it as follows,

Σ(Di) =

Σ11(Di) Σ12(Di)

Σ21(Di) Σ22(Di)

 (23)

and

Σ11(Di) =
(
Diσ

(1)
treated + (1−Di)σ

(1)
control

)2

,

Σ12(Di) = Σ21(Di) = Diρtreatedσ
(1)
treatedσ

(2)
treated + (1−Di)ρcontrolσ

(1)
controlσ

(2)
control,

Σ22(Di) =
(
Diσ

(2)
treated + (1−Di)σ

(2)
control

)2

.

15



For the treated group we specify µ
(1)
treated = 3.10, µ

(2)
treated = 0.18, σ

(1)
treated = 0.16, σ

(2)
treated =

0.19, ρtreated = −0.55; while for the controlled group, we specify µ
(1)
control = 3.87, µ

(2)
control =

6.36, σ
(1)
control = 0.48, σ

(2)
control = 0.20, ρcontrol = 0.42. We use the posterior mean of the

posterior sampling generated from Bayesian IFM as the estimation of ρtreated and ρcontrol.

In Table 2, we summarize the posterior mean estimation results for ρtreated and ρcontrol,

denoted by ρ̄treated and ρ̄control respectively, with different sample size specifications (n ≡

n(1)+n(0) = 500, 1000, 5000, 10000) across 1000 Monte Carlo simulations. In each MCMC

sampling procedure, we run 110, 000 iterations, discarding the initial 10, 000 draws (burn-in

draws), and store remained sampling for every 10 draws (thinning draws). Namely, for each

exercise of the Monte Carlo simulation, the posterior mean is based on a total of 10, 000

posterior samples. Our estimation procedure is efficiently implemented in a hybrid manner

using both R and C++, supported by Rcpp (Eddelbuettel, 2013). We provide an R package,

multdr, that implements all the main procedures. Since the MCMC sampling procedure,

along with the auxiliary optimization, is efficiently programmed in C++, it can easily handle

more demanding situations as the total number of MCMC iterations increases.

Table 2

n = 500 n = 1000 n = 5000 n = 10000

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

ρ̄treated −0.5500 0.0616 −0.5526 0.0445 −0.5511 0.0199 −0.5500 0.0142

ρ̄control 0.3072 0.0692 0.3578 0.0509 0.4077 0.0217 0.4141 0.0142

As suggested by Table 2, ρ̄treated and ρ̄control approaches the true value in probability as the

sample size increases, which is consistent with the theory.
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5. Empirical Application

In this section, we illustrate our approach by applying it to the data of Card and Krueger

(1994), hereafter CK. The work of CK is influential in labor economics, not only for its

empirical findings challenging the conventional view that minimum wage hikes harm em-

ployment but also for motivating subsequent research on causal inference methodologies,

such as difference-in-differences (DiD) and synthetic controls. The main focus of CK is the

policy implemented in April 1992, when New Jersey increased its minimum wage from the

federal level of 4.25 to 5.05 per hour. There are two corresponding outcomes associated with

this policy intervention: the number of full-time and part-time employees, respectively. By

employing a difference-in-differences (DiD) approach, comparing outcomes before and after

wage hikes across affected and unaffected states or regions, the authors of CK find that the

increase in the minimum wage does not necessarily lead to a decrease in employment. As

mentioned in the original work of CK, the authors focus on the aggregate outcome—namely,

total employment measured as the full-time workers plus 0.5 times the number of part-time

workers. In contrast, our approach centers on decomposing the aggregate outcome by ex-

plicitly modeling the dependence structure between full-time and part-time employment,

with particular attention to how this dependence may be affected by the policy interven-

tion. Since in this setting there are two outcomes, i.e. M = 2, we use ρtreated (ρY (1)(1, 1)

in (17)) and ρcontrol (ρY (0)(1, 1) in (18)) to denote the dependence structure parameters.

We estimate that, using our method, ρ̄treated = −0.176 and ρ̄counterfactual = −0.1293. In

the MCMC sampling procedure, we run 110, 000 iterations, discarding the initial 10, 000

draws (burn-in draws), and store remained sampling for every 10 draws (thinning draws).

ρ̄treated = −0.176 and ρ̄counterfactual = −0.1293 are calculated as the sample average using

the retained 10, 000 posterior samples.

Figure 2 summarizes the main information of this estimation. This estimation re-

sult suggests that the minimum-wage increase magnified the negative dependence between
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Figure 2: Posterior Distribution of ρtreated and ρcontrol.
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Figure 3: Contour of Distribution

full-time and part-time employment compared with the counterfactual without the inter-

vention. The slightly stronger negative correlation following the minimum-wage increase

suggests a substitution effect between full-time and part-time employment, which may

partly explain CK’s finding that employment did not decline as expected. As a by-product,

our approach can provide counterfactual joint distributions of multiple outcomes via cop-

ula link while keeping the flexibility of marginals. We demonstrate the contour (logarithm

of (13)) of the joint distribution of full-time and part-time employment both in the pres-
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ence of a policy intervention, in Figure 3(a), and in the counterfactual absence of such a

minimum-wage policy, in Figure 3(b), respectively.

6. Conclusion

Building on recent developments in distributional regression, we develop a Bayesian ap-

proach for modeling dependence among multiple outcomes in a standard causal inference

setting by integrating copula methods into the distributional regression framework. Our

approach retains the key structure and advantages of distributional regression while pro-

viding more flexible Bayesian estimation and posterior inference for the effects of policy

interventions on the dependence structure among multiple outcomes.

The modeling framework and methods we present in this paper are easy to implement

with carefully chosen Metropolis–Hastings proposals. Inference based on posterior sampling

obviates the need to compute complex variance estimators or to rely on bootstrap methods,

making the approach more flexible. To demonstrate our approach, we revisit the study

of Card and Krueger (1994), extending it to multiple outcomes — full-time and part-time

employment — and modeling their dependence in a standard difference-in-differences (DiD)

framework. We find that the minimum-wage increase slightly amplifies the substitution

effect between full-time and part-time employment, relative to no policy intervention.

Our analysis can be readily extended to settings that incorporate covariates to model

covariate-driven heterogeneity — for example, within the synthetic difference-in-differences

framework of Arkhangelsky et al. (2021). Additionally, the model and method we propose

currently handle continuous marginals, and therefore another meaningful extension would

be accommodating mixed marginals including both continuous and discrete data. These

extensions demand more advanced linking methodologies, which are of greater interests,

and are left for future work.
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Appendix

A. Derivation of the pseudo-likelihood

Let ΦM(·;R(g, t)) denote the cumulative distribution function (CDF) of an M -dimensional

multivariate Gaussian distribution with zero mean and R(g, t) as the covariance matrix,

while Φ1(·) denotes the CDF of the univariate standard Gaussian distribution. Additionally,

we denote ϕM(·;R(g, t)) as the probability density function (PDF) of ΦM(·;R(g, t)) and

ϕ1(·) as the PDF of Φ1(·). With this notation the characterization of joint distribution, we

derive the pseudo-likelihood as

∂MFY |G,T (y
(1), . . . , y(M) | g, t)

∂y(1), . . . , ∂y(M)

=
ϕM

(
Φ−1

1

(
FY (1)|G,T

(
y(1) | g, t

))
, . . . ,Φ−1

1

(
FY (M)|G,T

(
y(M) | g, t

))
;R(g, t)

)∏M
m=1 ϕ1

(
Φ−1

1

(
FY (m)|G,T (y(m) | g, t)

)) M∏
m=1

fY (m)|G,T

(
y(m) | g, t

)

=
ϕM

(
z(1), . . . , z(M);R(g, t)

)∏M
m=1 ϕ1 (z(m))

M∏
m=1

fY (m)|G,T

(
y(m) | g, t

)

= det (R(g, t))−1/2 exp
{
−1

2
z⊤[R(g, t)]−1z

}
exp

(
−1

2
z⊤z

) M∏
m=1

fY (m)|G,T

(
y(m) | g, t

)

=
1√

det (R(g, t))
exp

{
−1

2
z⊤ (

[R(g, t)]−1 − IM
)
z

} M∏
m=1

fY (m)|G,T

(
y(m) | g, t

)
. (A.1)

If for each 1 ⩽ m ⩽ M , FY (m)|G,T

(
y(m) | g, t

)
is the just the CDF of standard univariate

Gaussian distribution, then the likelihood function will degenerates to density function of

multivariate normal distribution with variance-covariance as R (g, t).
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B. MCMC Diagnosis

We report MCMC diagnostic plots only for the empirical applications, as the correspond-

ing check plots for the simulations are quite similar. These diagnosis plots suggest that

the MCMC procedure generates a mean-stationary posterior samples both for ρtreated and

ρcounterfactual.
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