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Abstract

This paper documents how Instumented Principal Component Analysis (IPCA) is applied in
uncovering the driving factors associated with firm-level characteristics to which fund managers
holding these stocks are exposed. IPCA is a specific statistical learning methodology featuring in
both latent factor structure and dynamic factor loading which accordingly is able to simultaneously
handle dimensionality and time-varying parameter concern for financial econometric modelling.
Linear structure is retained and therefore corresponding statistical hypothesis testing is possible
to be implemented. In this paper, we firstly construct fund-level index as the measure of exposure
of each fund to firm-level characteristics (commonly referred to “anomalies” in accounting or
finance literature) and document the empirically stylized facts revealed from the constructed
dataset. With the constructed fund-level index, we apply the novel IPCA methodology along
with our proposed ℓ1/ℓq-regularized IPCA to discuss how mutual fund return is exposed to
characteristics of managed assets (specifically those firm-level characteristics of assets hold by
fund).
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1 Introduction

Factor structure imposed on financial asset returns has become the pivotal part of modern financial
modelling ever since the pioneering blueprint established in Fama and French (1992, 1993, 1996)
and most recently the 5-factor structure proposed in Fama and French (2015). Essentially speaking,
the driving force, and to some extent the most critical one, for the factor model and later many
other following advanced methodologies is about handling question that how financial assets are
exposed to cross-sectional information. Generally there are two kinds of methodologies dealing
factor modelling in extant literature: (i) The first one corresponds to pre-specifying factors based on
ex-ante established knowledge about cross-sectional accounting information. In research of this style,
many benchmark factors have been established for explaining the cross-sectional variances associated
with asset returns and among which the most representative ones include Fama and French (1993),
Fama and French (2015), Hou, Xue, and Zhang (2015) and many other anomaly-mining related
studies comprehensively documented in extant empirical finance literature (see Hou, Xue, and
Zhang, 2018; Chen and Zimmermann, 2020, for relatively comprehensive summary); (ii) The second
one refers to modelling factors as latent variables and applying statistical factor analysis techniques
such as Principal Component Analysis (PCA) to estimate factors and factor loadings simultaneously.
Studies of this kind can be at least traced back to Connor and Korajczyk (1986), Chamberlain and
Rothschild (1983) and recently have been extended in a series of work in (Kozak, Nagel, and Santosh,
2018, 2020; Kozak, 2020; Lettu and Pelger, 2020a,b) by incorporating related machine-learning
methodologies. But one major shortcoming inherently coming up with this standard latent factor
analysis is that it does not suite the conditional asset pricing specification which relates the future
asset returns with current information. Recently there are some discussions on incorporating
dynamic feature in factor loading such as the work but not limited to Kelly, Pruitt, and Su (2019,
2020) and Haddad, Kozak, and Santosh (2020).

However, all these existing studies currently focus on individual stock-related assets and rarely
is there any discussion investigating how fund investment is exposed to cross-sectional information
by applying these recently proposed advanced methodologies. It is well-known that funds are
essentially portfolios in the investment pool of fund managers, several studies have been documented
in literature (see the representative ones such as Kosowski, Timmermann, Wermers, and White,
2006; Fama and French, 2010; Harvey and Liu, 2020) where the major theme of these studies is about
carefully designing bootstrap procedure for inferring whether mutual funds outperform. However all
these studies are all built upon reduced form regression framework with regressors, on the R.H.S. of
regression equation, specified as benchmark pre-specifying factors (for instance CAPM, three-factor
and four-factor benchmarks), which cannot be directly applied in the setting where funds are exposed
to much more firm-level characteristics that have been comprehensively documented recently in
literature (see some benchmark date sets that have recently used in Green, Hand, and Zhang,
2017; Gu, Kelly, and Xiu, 2019; Demiguel, Martín, Nogales, and Uppal, 2020; Chen, 2019; Harvey
and Liu, 2014, 2015; Harvey, Liu, and Zhu, 2016; Freybergerk, Neuhierl, and Weber, 2019; Kozak,
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Nagel, and Santosh, 2020; Kozak, 2020, and the most recent comprehensive summary in Chen and
Zimmermann (2020)). Given this increasing availability of cross-sectional accounting information,
we postulate that IPCA (Instrumented Principal Component Analysis) established in (Kelly, Pruitt,
and Su, 2019, henthforth KPS2019) and (Kelly, Pruitt, and Su, 2020, henceforth KPS2020) is
relatively more suitable framework within which we may conduct our empirical studies with the
target as investigating how fund investment is exposed these asset characteristics at firm-level.
Recently there is progress on this strand using cross-sectional information of holding assets to
study investment behaviour of fund managers: Li and Rossi (2021) adds to literature from the
perspective of investigating how fund investment is exposed to the characteristics of holding assets
using machine-learning methodology and demonstrates that although machine-learning method
may generate significant predictability, the exposure of fund to characteristics of holding assets are
time-varying. Our paper is quite similar to Li and Rossi (2021) in this regard but focus more on
investigating factor-exposure structure of funds using within the framework of IPCA.

Since the time when IPCA was proposed, it has achieved empirical success in some recent studies
(see Kelly, Palhares, and Pruitt, 2020; Kelly, Moskowitz, and Pruitt, 2021). The success of the
application of IPCA may be attributed to the following reasons: (i) linear structure is retained
for IPCA and accordingly enable it to be reconciled with existing factor analysis in economics and
finance (see Geweke, 1977; Sargent and Sims, 1977; Bai and Ng, 2002; Bai, 2003; Bai and Ng, 2013;
Fan, Liao, and Wang, 2016; Stock and Watson, 2002) and easy to be implemented; (ii) Statistical
testing is easy to be established based on bootstrap for making inference; (iii) The way linking factor
loading with firm-level characteristics suggested by IPCA makes it automatically accommodate
dynamic factor loading, which is one of the long-existing concern in factor modelling.

In this paper, we exploit IPCA as the major workhorse to conduct our analysis along with one
novel extension of IPCA by incorporating statistical learning regularization for addressing the joint
selection. This extension to some extent serve one alternative supplement to IPCA when applying
testing framework established along with IPCA in determining how fund is exposed to firm-level
characteristics of holding assets in that there are always some subtle issues associated with bootstrap
design and bootstrap procedure is usually computationally heavy in the sense that generally there
should be a reasonably large bootstrap sample sizes for obtaining reliable results. Besides, the data
set of fund-level index constructed as the measure of exposure of fund to characteristics of holding
assets following Kacperczyk, Sialm, and Zheng (2006) and Hoberg, Kumar, and Prabhala (2017)
also to some extent facilitate the further studies corresponding to applying statistical learning or
machine-learning methods in fund-relates researches. Related studies akin to this research style
include Büchner (2021), in which a specific IPCA of augmented dimension is discussed so as to
accommodate heterogeneity over institutional investors and this extended IPCA methodology refers
to three-dimensional instrumented principal component methodology (IPCA3D).

The rest of this paper is structured as follows: In Section 2 we will discuss the basic modelling
framework established on top of Instrumented Principal Component Analysis (IPCA) and the
associated testing framework that serves as the workhorse of our empirical study. In Section 3 we
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proceed to discuss how our fund data and firm-level characteristics are constructed and collected
along with the discussion corresponding the novel fun-level index constructed as the measure of
exposure of each fund to the cross-sectional information of equity assets it holds. Late in the following
discussion contained in Section 4, we firstly summarize some basic information from our constructed
fund-level index data for the purpose of checking the stylized fact corresponding the exposure of
fund to some major anomalies both at overall level (i.e. simultaneously accommodating time-series
and cross-sectional dimension) and over cross-sectional and time-series dimension respectively. Then
we apply IPCA to conduct our empirical implementation. Finally Section 5 concludes this paper.

2 Basic Modelling Framework: Recap

Cross-sectional asset pricing literature postulates that returns associated with different assets are
exposed to the corresponding asset characteristics, essentially different portfolios can be constructed
from sorting on these characteristics and accordingly the induced returns of these constructed
portfolios are commonly referred to anomalies in literature. Currently there is a vast amount
of literature discussing how the cross-sectional characteristics are related with asset return ever
since 3-factor modeling framework established in Fama and French (1992, 1993), in which “Size”
(measured by market equity) and “Value” (measured by book-to-market ratio) along with the CAPM
implied market factor are proposed as driving characteristics for stock return. Recently there is
growing literature discussing how the rising machine-learning algorithms are able to play the role
in identifying driving cross-sectional characteristics for different assets such as stocks (Gu, Kelly,
and Xiu, 2019) and bonds (Kelly, Palhares, and Pruitt, 2020), however by far rarely is there any
discussion corresponding to the fund-related returns following this strand.

The way that distinguishes IPCA from conventional factor modeling framework, as to be
discussed in the preceding discussion, is the parametrization of factor beta as to link the firm and
and asset characteristics. To facilitate the following discussion, we may firstly extend IPCA from
KPS2019 and KPS2020 to fit this setting as following

ri,t+1 = αi,t + βi,tft+1 + ϵi,t+1 (1)

αi,t = z⊺i,tΓα + να,i,t, βi,t = z⊺i,tΓβ + νβ,i,t (2)

where zi,t is a L×1 vector collecting L normalized characteristics while Γα and Γβ are L×1 vector and
L ×K matrix respectively, similarly referred to factor loadings in standard literature. Accordingly
αi,t and βi,t are 1 × 1 scalar and 1 ×K row vector respectively. K denotes the specified number
of factors. 1 Both Γα and Γβ are identified only up to rotation and this could be alternatively
interpreted as that K-factor IPCA finds the K-dimensional space spanned by estimated factors but
the rotation of these factors does not change the corresponding model fit. The identification scheme
is same as the way suggested in Kelly, Pruitt, and Su (2020) with additional normalization imposed

1 For the sake of matrix dimension match, we have to assume να,i,t and νβ,i,t as scalar and 1 ×K row vector as well.
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such that Γ⊺βΓβ is identity matrix. As suggested in (1) and (2), we are interested in the following to
be discussed null-hypothesis testing in the following discussion we will demonstrate that suggested
framework conducting null-alternative hypothesis testing does not suffer from the identification
issue of the specified factor structure. We may plug (2) into (1), which yields

ri,t+1 = z⊺i,tΓα + z⊺i,tΓβft+1 + ϵ∗i,t+1, ϵ∗i,t+1 = ϵi,t+1 + να,i,t + νβ,i,tft+1. (3)

Several advantaged of IPCA is brought with this advantage as our target is to obtain estimation
of Γ = [Γα,Γβ] and factors collected in {ft} in that alternating least squares (ALS) methodology
can be applied alternatively between minimizing Γ while holding {ft} fixed, and minimizing over ft

while holding Γ fixed. This handles unbalanced panels as easily as pooled OLS. More comprehensive
technical details and discussions are well documented in KPS2020, which is one of the most recent
literature the readers may refer to. We will briefly revisit ALS ideas and statistical testing framework
established in KPS2020 in this section before we move on to the empirical application part as
all these established estimation and testing procedure serve as the workhorse though which our
empirical study is conducted and lay the foundation for our proposed ℓ1/ℓq-regularized IPCA for
joint selection that is to be covered in subsection 4.3.

2.1 Estimation

Note that we may characterize reduced form of IPCA equation (3) in compact matrix form as
following

rt+1 = ZtΓβft+1 + ϵ∗t+1 (4)

where the additionally introduced notations are summarized as following

Zt : N ×L matrix, normalized firm-level characteristics.

rt+1 : N × 1 vector, collecting individual asset returns at t + 1.

ϵ∗t+1 : Vector collecting ϵ∗i,t+1, where ϵ∗i,t+1 = ϵi,t+1 + να,i,t + νβ,i,tft+1.

From the least squares perspective, the objective of IPCA in terms of estimation is to obtain
estimation of Γβ and {ft+1} jointly through the following quadratic optimization problem.

min
Γβ ,{ft+1}

1

T

T−1

∑
t=1

(rt+1 −ZtΓβft+1)
⊺ (rt+1 −ZtΓβft+1) (5)

For the sake of retaining focus on the main ideas associated with ALS estimation of IPCA, we
encompass intercept term as one factor. In other word, if first element of ft+1 is 1 then the first
column of Γβ for this scenario maps exactly to Γα. The way KPS2019 derives their formula for
alternating least squares is based on rewriting this minimization as stacked linear form whereas
detailed discussion is ignored in that it is not major focus of that paper, but it would be inspiring
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to discuss corresponding details more explicitly here to see the potential for extension to framework
for joint selection by incorporating regularization. Summation taken over time-series dimension
is separable and first order conditions taken with respect to ft+1 with Γβ fixed for each t. This is
OLS-style F.O.C. and yields

f̂t+1 = (Γ⊺βZ
⊺

tZtΓβ)
−1

Γ⊺βZ
⊺

t rt+1 (6)

With fixed estimation {f̂t+1}, the F.O.C. implied from taking first order derivative with respect to
Γβ is given as

vec (Γ̂⊺β) =
⎛
⎜
⎝

T

∑
t=1

Z⊺tZt ⊗ ft+1f
⊺

t+1

⎞
⎟
⎠

−1
⎛
⎜
⎝

T−1

∑
t=1

(Z⊺t ⊗ rt+1) ft+1
⎞
⎟
⎠

(7)

In appendix A we demonstrate how it is obtained, which is not covered that much in details in
KPS2019 and KPS2020. To sum up, iterating over F.O.C. characterized by (6) and (7) alternatively
starting from an initialized guess of Γβ until tolerance condition has been satisfied yields the this
alternating least squares estimation of Γ̂β and {f̂t+1} respectively.

2.2 Testing based ALS estimation

In this section, we revisit how statistical testing framework is to be established based ALS estimation
Γ̂β and f̂t+1 suggested from (6) and (7).

2.2.1 Testing intercept term

This testing framework is fully characterized as following

H0 ∶ Γα = 0L×1

H1 ∶ Γα ≠ 0L×1

The proposed Wald-type statistic is
Wα = Γ̂⊺αΓ̂α (8)

and based on this the corresponding inference is implemented through the following bootstrap
procedure. To facilitate our discussion of bootstrap procedure, we characterize (1) in matrix form
as following 2

xt = Z⊺t rt+1 = (Z⊺tZt)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

Wt

Γα + (Z⊺tZt)Γβft+1 +Z⊺t ϵ∗t+1 (9)

where all the notations in bold-face refer to vectors or matrices collecting cross-sectional elements
associated with timing index t and t + 1. Specifically, we introduce another notation xt, which is as
following

2 Alternatively, it is possible to interpret (9) in this way such that managed portfolio returns are exposed to common
factors through factor loading (Z⊺tZt)Γβ .
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xt : L × 1 vector, “managed portfolio” (KPS2019).

Remark 2.1 Although it seems that (9) suggests a balanced matrix manipulation, we want to
emphasize it here that the real data exploited for empirical analysis is essentially an unbalanced
panel data. Accordingly for each element xl,t indexed by pair (l, t) in xt, it is constructed as the
dot product of sub-vector of the l-th column of Zt, for which the indices associated with elements
contained in these vectors also map to non-missing observations in rt+1. In other words, for each
fixed t, we eliminate missing elements either for the L columns of Zt or rt+1.

The bootstrap procedure is implemented as following

Step 1. Estimating unrestricted model without imposing restrictions Γα = 0, thus we allow
intercept in the modelling and retain the corresponding estimation:

Γ̂α, Γ̂β, {ft}Tt=1

Step 2. Next for b = 1, . . . ,B, generating the b-th bootstrap sample as

x̃b
t+1 = (Z⊺tZt) Γ̂β f̂t+1 + d̃b

t+1, d̃b
t+1 = qb1,t+1d̂qb2,t+1

(10)

where d̂qb2,t+1
refers to the qb2,t+1-th element extracted from {d̂t}

T

t=1
and each d̂t serves as

the residual counterpart of Z⊺t ϵ∗t+1 implied from (9); and qb1,t+1, as suggested in KPS2019,
refers to random variables sampled from Student-t distribution with unit variance and
five degrees of freedom. Then for each b, using the bootstrap sample to re-estimate the
unrestricted model and retain the corresponding estimated test statistic as

W̃ b
α = Γ̃b⊺

α Γ̃b
α (11)

Step 3. p-value associated this null-hypothesis testing is implied from the empirical null distri-
bution generated from bootstrap sample by specifying it as the fraction of bootstrapped
statistics W̃α that exceeds the estimated Wα from data. 3

2.2.2 Testing instrument significance

The basic testing procedure methodologically inherits much from the testing framework established
for testing significance of intercept term. A specific test designed for testing whether corresponding

3 This step could be intuitively interpreted as following: the bootstrapped data x̃b
t+1 is re-sampled data for given Zt, Γ̂β

and f̂t+1 with restrictions imposed such that Γα = 0 and accordingly bootstrapped data x̃b
t+1 generated via re-sampling

residuals reveals information associated with the imposed restrictions. Γ̃b
α is unrestricted estimation of Γα associated

with bootstrapped data, which naturally induces empirical null distribution. Alternatively, the generated p-value
claimed in Step 3. implies whether unrestricted estimation Γα is significantly large in terms of Euclidean norm with
respect to the bootstrapped empirical null distribution associated with Γ̃b

α.
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instrument (firm-level characteristic) significantly contribute to βi,t. Thus we are interested in the
partition of the loading matrix as following

Γβ = [γβ,1, . . . , γβ,L]
⊺ (12)

The proposed test-statistics are based on the following null hypothesis and alternative hypothesis.

H0 ∶ Γβ = [γβ,1, . . . , γβ,l−1,0K×1, γβ,l+1, . . . , γβ,L]
⊺

H1 ∶ Γβ = [γβ,1, . . . , γβ,L]
⊺

with the induced Wald-type statistic constructed as following

Wβ,l = γ̂⊺β,lγ̂β,l (13)

The bootstrap procedure implemented for the above specified hypothesis-testing framework is in
analogy to the one described previously for testing Γα, for comparison purpose we summarize the
corresponding steps in the following

Step 1. Estimating unrestricted model without imposing restriction γβ,l = 0K×1 so as to obtain
estimation of Γβ such that

Γ̂β = [γ̂β,1, . . . , γ̂β,l−1, γβ,l, γ̂β,l+1, . . . γ̂β,L]
⊺ (14)

Step 2. Next for b = 1, . . . ,B, generating the b-th bootstrap sample as

x̃b
t+1 = Γ̂α + (Z⊺tZt) Γ̃β f̂t+1 + d̃b

t+1 (15)

where
Γ̃β = [γ̂β,1, . . . , γ̂β,l−1,0K×1, γ̂β,l+1, . . . , γ̂β,L]

⊺ (16)

and d̃b
t+1 denotes the bootstrapped sample of {d̂t} with each d̂t indicating the residual

counterpart of Z⊺t ϵ∗t+1 implied from unrestricted estimation. Then bootstrapped sample
x̂b
t is applied to re-estimate the alternative model ( i.e. unrestricted model) and obtain

estimation of l-th column of Γ̃β, denoted by γ̃β,l. Accordingly the bootstrapped test
statistic is given as

W̃ b
β,l = γ̃⊺β,lγ̃β,l (17)

Step 3. p-value associated this null-hypothesis testing is implied from the empirical null distri-
bution generated from bootstrap sample by specifying it as the fraction of bootstrapped
statistics W̃β,l that exceeds the estimated Wβ,l from data.

7



2.2.3 Testing additional observable factors significance

Likewise, we may augment factor space by adding observable factors documented in literature
(for instance, Fama-French 3-factors) and construct Wald-type statistic to test funds are exposed
to these observable factors. We temporarily focus on the restricted model (i.e. Γα = 0) but it
would be convenient to extend by including intercept term. Specifically we augment factor space as
f̃t+1 = [f⊺t+1, g⊺t+1]

⊺ and correspondingly Γ̃ ≡ [Γβ,Γδ], where gt+1 denotes the M × 1 vector collecting
added observable factors and Γδ as L ×M matrix denotes the accompanied factor loading matrix.
This specification obviously implies that each asset return is exposed to common factors in the
following way

ri,t+1 = z⊺i,tΓβft+1 + z⊺i,tΓδgt+1 + ϵi,t+1 + νβ,i,tft+1 + νδ,i,tgt+1 (18)

where we have implicitly imposed the structure that δi,t = z⊺i,tΓδ + νδ,i,t and likewise we assume
that δi,t and νδ,i,t as 1 ×M row vector to make corresponding matrix computation reconcilable.
Then we can apply previously established framework almost in the same way here to construct
Wald-type statistic for checking whether Γδ is significantly away from zero. Thus for this scenario
the corresponding null and alternative hypothesis are claimed respectively as following

H0 ∶ Γδ = 0L×M

H1 ∶ Γδ ≠ 0L×M

the Wald-type statistic is constructed Wδ = vec (Γ̂δ)
⊺

vec (Γ̂δ), where Γ̂δ denotes the unrestricted esti-
mation of Γδ in (18). Wild bootstrap procedure can be applied similarly here via resampling residuals
from Z⊺t rt+1−Z⊺t Γ̂βft+1−Z⊺t Γ̂δgt+1. Then use the bootstrapped data to obtain unrestricted estimation
of Γδ denoted by Γ̃̃δ and accordingly the bootstrapped Wald-statistic W̃̃ δ = vec (Γ̃̃δ)

⊺

vec (Γ̃̃δ). Fi-
nally the p-value associated with this hypothesis testing is calculated as the fraction of bootstrapped
W̃̃ δ that exceeds Wδ.

3 Data

3.1 Fund holding data

We follow the standard procedure as in Kacperczyk, Sialm, and Zheng (2006) and Hoberg, Kumar,
and Prabhala (2017) to collect, clean and construct fund-related data from the Center for Research
in Security Prices (CRSP) Survivorship Bias Free Mutual Fund Database and later merge it with
Thompson Financial CDA/Spectrum holdings database and CRSP stock price data following
methodology of Kacperczyk, Sialm, and Zheng (2005). Furthermore to shrink the universe of funds,
we leverage the methodology suggested in Kacperczyk, Sialm, and Zheng (2006), which is essentially
a sequential algorithm. Thus we firstly select funds whose Lipper Classification Code (identified
by lipper_class) is one of the following: EIEI, LCCE, LCGE, LCVE, MCCE, MCGE, MCVE,
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MLCE, MLGE, MLVE, SCCE, SCGE, or SCVE; If the Lipper classification code is missing, funds
are selected as those whith “Straight Insights” Objective code (identified by si_obj_cd) as one
of the following: AGG, GMC, GRI, GRO, ING, or SCG; Then if both codes are missing, funds
are selected as those with Wiesenberger objective codes (identified by wbrger_obj_cd) as one of
the following: G, G-I, GCI, LTG, MCG, or SCG, or those with “Policy” code of CS. Besides, the
universe of funds are restricted to those funds whose lifetime average investment in equity is at
least 80% and those funds holding fewer than 10 stocks and managed assets less than $5 million
are excluded from the fund universe as well. Portfolio holdings are matched to mutual funds using
MFLINK tables developed by Russ Wermers and made available via Wharton Research Data Services.

3.2 Firm-level characteristic data

Firm-level characteristic data used for empirical analysis in this paper follows the strand of literation
either from accounting or finance including (Green, Hand, and Zhang, 2017; Gu, Kelly, and Xiu, 2019;
Demiguel, Martín, Nogales, and Uppal, 2020; Chen, 2019; Harvey and Liu, 2014, 2015; Harvey, Liu,
and Zhu, 2016; Freybergerk, Neuhierl, and Weber, 2019; Kozak, Nagel, and Santosh, 2020; Kozak,
2020). Several standard databases have been available for researches based on this work, but to the
limited knowledge of us, the most recent work done in Chen and Zimmermann (2020) (henceforth
CZ2020a) is by far the most recent and comprehensive one that has successfully covered almost all
the major documented anomalies in literature 4. The work done by CZ2020a is relatively a successful
response to the call for transparency and cooperation and in empirical finance research, which is
claimed in Welch (2019). We focus on 208 firm-level characteristics constructed in CZ2020a including
“Size” (measured as the market equity value associated with each individual stock) characteristic
constructed following standard procedure as in Fama and French (1992, 1993, 1996, 1997). We
summarize the basic information of these 208 characteristics in Table D.1 as readers’ references for
details.

For the constructed firm-level characteristics, each characteristic is normalized crosss-sectionally
to make it lie in between 0 and 1 in a way such that

rc s
i,t =

rank (c s
i,t)

nt + 1
(19)

where cs
i,t refers to the originally unscaled firm-level characteristic (indexed by superscript s)

associated with stock i at time t and nt refers to the total number of firms available for observations
at time t. rank(⋅) denotes the cross-sectional ranking order of specific variable.

4 We acknowledge the codes and data kindly shared by the authors and their efforts on constantly maintaining and
updating the data. Both the codes and data are available at the authors’ maintained website https://sites.google.
com/site/chenandrewy/open-source-ap?authuser=0. The dataset used in this paper mainly corresponds to the
released version “Version 0.1.2, Patch, July 23, 2020”. Currently there is a newly released version, “March 2021 Data
Release: Major Update”.
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3.3 Fund-level characteristic data

In this section, we briefly discuss how we link the fund-level characteristic data and firm-level
characteristic data discussed in subsection 3.1 and subsection 3.3. Specifically, we merge the fund
data (including “date” at monthly frequency and fund identifier “fundno") with collected firm-level
characteristic data using “date” and “permno” as key. Once these two datasets are merged as the
way suggested, we define the fund-level characteristic data as the index measuring the extent to
which each fund is exposed to the corresponding characteristics. Specifically, we define fund-level
index as weighted average of normalized firm-level characteristics as following 5

zs
j,t =

ns
j,t+1

∑
i=1

ws
j,i,t ⋅ rcs

i,t (20)

where notations involved in (20) are little bit complicated and accordingly the corresponding detailed
notation explanations are summarized as following,

z s
j,t : fund level index, associated with fund j at time t, exposed to characteristic s.

n s
j,t+1 : total number of stocks hold by fund j at time t + 1, that are available for

being as the observations at time t.

w s
j,i,t : weights used for aggregating firm-level characteristics.

Thus the weight assigned to stock i hold by fund j, the superscript s denote

the normalized characteristic to which fund j is exposed.

rc s
i,t : normalized characteristic s at firm-level associated with stock i at time t

as expressed in (19).

More specifically, the weights adopted for constructing (20) is constructed from lagged holding value,
denoted by HVALUE j,i,t, which is calculated as

HVALUE j,i,t = shares j,i,t+1 × cfacshr j,i,t+1 × (
∣prc∣

cfacpr
)
t

(21)

where the corresponding WRDS identifier acronyms are explained as following respectively

shares : Shares held by fund at the end of each quarter.

cfacshr : Cumulative Factor to Adjust Shares/Vol.

cfacpr : Cumulative Factor to Adjust Prices.

prc : Price or Bid/Ask Average. (∣⋅∣ refers to evaluated absolute values).
and subscript i refers to the index of stocks hold by fund. Accordingly, for each fund j and firm-level
characteristic s, w s

j,i,t is self-normalized HVALUE j,i,t.

5 This constructed fund-level index is akin to the Anomalies Investing Measure (AIM) proposed in Ali, Chen, Yao, and
Yu (2008).
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Remark 3.1 shares j,i,t+1 refers to shares of stock i hold by fund j at time t+1, but when it is time
to consider how to merge back firm-level characteristic with fund holding data, we have to take the
lagged information into account. Alternatively speaking, we have to exploit lagged holding values as
weights to rescale firm-level characteristics as to construct fun-level index measuring exposure of fund
to each characteristic, and accordingly lagged cross-sectional information of firm-level characteristics
has to be accommodated for alignment as well. One of the similar discussion has been done in
(Lettau, Ludvigson, and Manoel, 2021, henceforth LLM2021) as well, but the discussion there does
not cover the application of IPCA methodology to accommodate dynamic exposure of fund return to
factor structure that summarizes cross-sectional information; Besides, the objective of LLM2021 is
slightly different from ours as well. However, some of the methodologies exploited are essentially
related and accordingly some of empirical findings coincide with those claimed in LLM2021. For
instance, we also find that those actively managed mutual funds in U.S. equity market generally
demonstrate tilted distribution in terms of the distribution over value-related measure such as the
conventional book-to-market ratio. 6 Although LLM2021 focus primarily on holdings of mutual funds,
one of the reason they claim for using holdings as the description of mutual fund strategies rather
than factor loadings is factor loadings naturally vary over time and accordingly are hard to handle.

Besides, we also include some standard fund-level characteristics such as fund flow sand fund age
in our constructed dataset. For the fund flow, we follow the way as in Barber, Huang, and Odean
(2016) through which fund flow for fund j at the end of month t is calculated as the percentage
growth of new funds at the the end of each month such that

flowj,t =
TNAj,t

TNAj,t−1
− (1 + rj,t) (22)

where TNAj,t refers to the total net assets under management of fund j. While fund age associated
with specific fund is simply the number of months from the inception of fund.

4 Empirical Findings

In this section, we proceed to the discussion corresponding to how fund managers’ investment be-
haviour (characterized by returns associated with each fund) is exposed to the constructed fund-level
index aggregating information contained in assets hold by each fund. We collect mutual fund return
data at monthly frequency from CRSP.Monthly_Returns database and require constructed data to
be identifiable from MFLINKS in a a specific way such that crsp_fundno as the key is identifiable
from MFL.MFLINKl database and those observations with missing wficn key are eliminated. 7

6 One of the finding in LLM2021 is that BM ratio of mutual fund is tilted towards low BM value rather than high BM
ratios.

7 As our construction of fund holding data requires funds to be identifiable from MFL.MFLINK2 database via fundno key
and for each cross-section sliced from this constructed panel data, thus on average we have around 100 funds at sliced
cross-section for each fixed t.
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4.1 Summary

It would be interesting to check how funds collected in the universe of funds investigated are
distributed on specific characteristics, thus AM (Total Assets to Market), BM (Book to market using
most recent ME), Mom12m (12-month Momentum), Mom6m (6-month Momentum), Mom1m (Short term
reversal), Size (Size measured market equity value).

[Place Figure 1 about here]

To see how the cross-sectional median varies over time, we plot cross-sectional median of
constructed fund-level indices exposed to the above mentioned anomalies (firm-level characteristics)
as following

[Place Figure 2 about here]

It would also be interesting to make a comparison about how funds are distributed on characteris-
tics associated with intangible information (for instance, Daniel and Titman, 2006; Eisfeldt, Kim, and
Papanikolaou, 2020) 8. Following the same procedure as implemented in the preceding discussion,
we demonstrate how funds are distributed over intangible returns associated with fundamental-price
ratios documented in Daniel and Titman (2006, henceforth DT2006). Details corresponding to how
intangible returns are established in connection with fundamental-price ratios are well documented
in DT2006 but I will briefly discuss how it is established in the note attached to the following figure.

[Place Figure 3 about here]

Similarly, we plot cross-sectional median of constructed fund-level indices exposed to the above
mentioned anomalies associated with intangible returns discussed in DT2006 as following

[Place Figure 4 about here]

Since one of the major target of this paper is to unravel how fund managers’ decisions (char-
acterized by return associated with each fund) is connected with our constructed fund-level index
measuring the extent to which each fund is exposed to the corresponding firm-level characteristics,
for the sake of data completeness, we retain our focus on the selected 16 characteristics from 208

firm-level characteristics, which essentially excludes those “score”-like characteristics taking discrete
values. 9

8 Characteristics associated intangible information are initially discussed formerly in Daniel and Titman (2006), where
the authors suggest a way to decompose historical return into “tangible” parts that can be unravelled solely based on
the past fundamental measures and correspondingly the “intangible” parts as the past returns remaining unexplained.

9 These 16 firm-level characteristics perhaps are the most prominent ones, it would need efforts to pin down a relatively
larger universe from these 208 characteristics of CZ2020a, which is currently listed in our research agenda. However,
as expansion of universe of firm-level characteristics data would become less informative as the balanced panel data
which is naturally should be the input of IPCA or our extended ℓ1/ℓq-regularized IPCA.
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4.2 Individual testing

For this section we specifically retain our focus on 16 major anomalies AM, BM, Mom12m, Mom6m,
Mom1m, Size, ChangeRoA, ChangeRoE, IdioRisk, IdioVol3F, IdioVolAHT, IdioVolCAPM, IntanBM,
IntanCFP, IntanEP, IntanMom. And for testing the contribution from each of these focused anomalies,
we basically implement the testing procedure discussed in subsection 2.2.2 based on the constructed
Wald-type statistic, Wβ,l, measuring the distance of associated rows of estimated Γβ away from zero.

[Place Table 1 about here]

In the above table, we summarize bootstrapped Wald-type statistic Wβ,l for testing statistical
significance of individual instruments (firm-level characteristics or anomalies) and the associated
bootstrapped p-values via the comparison between Wald-type statistic constructed from unrestricted
estimation of Γβ and the bootstrapped sample {W̃ b

β,l}
B

b=1
with null-hypothesis testing restriction

imposed on Γβ as we have discussed in the previous section. We basically summarizes 5 different
cases with different specification of factor numbers such that K ranges from 2 to 6 and for each
case the column-pair documents testing statistic Wβ,l and bootstrapped p-value respectively. “***”,
“**” and “*” refers to statistical significance levels at 1%, 5% and 10% respectively.

One of the suggested result from this table is that in terms of statistical significance, “Value”
(measured as our constructed fund-level index exposed to firm-level book-to-market ratio) does
significantly matter for the most for the exposure of equity fund to different factors that summarizes
the cross-sectional variances under different factor specifications ranging from K = 2 to K = 6. This
finding to some extent suggests that fund managers (at least for equity fund managers given our
filtering scheme) still pays relatively more attention to the values (measures by book-to-market
ratio) as choosing assets to construct portfolios. Moreover as the number of specified factor
increases such as K = 5 and K = 6, the contribution from size of assets hold by funds to the cross-
sectional exposure increases and this is consistent with the intuition underlying factor modelling
that as cross-sectional dimension increases more factors are needed to summarize the cross-sectional
information. We also report results corresponding to fund-level characteristic universe slightly
augmented to 19 characteristics with additional basic fund-level characteristics (TNA (total net
assets under management), flow (fund flow) and age(fund age)) added. We find that these three
basic fund-level characteristics significantly matters for the structure of factor exposure but the
contributions to factor exposure from “value” and “size” related fund-level characteristics are still
relatively significant at certain significance level. Detailed results are summarized in Table B.1.

To conduct a relatively more comprehensive analysis, we expand the universe to match
the firm-level characteristics discussed in Kozak (2020) as much as possible, although to make
such a kind of expansion applicable we need to replace matrix inverse with Moore-Penrose in-
verse instead. Thus for the following discussion we retain our focus on the fund-level indices
as the exposure to the following listed firm-level characteristics of holding assets: Size, BM,
GP, Profitability, PS, DebtIssuance, ShareRepurchase, ShareIss1Y, Accruals, AssetGrowth,
ChAssetTurnover, DivYield, EP, CF, NOA, Investment, InvGrowth, Leverage, SP, GrLTNOA, Mom6m,
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IndMom, ShortInterest, Mom12m, Mom1m, Mom18m13m, EarningsSurprise, ChangeRoA, ChangeRoE,
IdioRisk, IdioVol3F, IdioVolAHT, IdioVolCAPM, CompEquIss, CompositeDebtIssuance, ShareVol,
EquityDuration (37 characteristics in total). Detailed meaning of these characteristic acronyms are
still contained in Table D.1. Besides, we add 3 basic normalized fund-level characteristics: TNA (total
net assets under management); flow (fund flow); age(fund age) to augment the fund-level index
space. Thus dimension of the finally augmented space is 37 + 3 = 40. Surprisingly, once within this
framework in which relatively more fund-level characteristics are accommodated, what remains the
most significant for measuring the factor structure of fund are basic fund-level characteristics rather
than the weighted aggregation of characteristics of holding assets. Detailed results are summarized
in Table C.1.

4.3 Joint selection

In this section, we proceed to propose one alternative incorporating ℓ1/ℓq regularized least squares in
the alternating least squares procedure associated with IPCA. This proposed methodology may serve
as an alternative to complement results suggested from bootstrapped IPCA. Recall the alternating
least squares objective function as in (5), we may focus on the the following equivalent transformation
so that we are able to impose regularization penalty for this objective function

min
Γβ ,{ft+1}

1

T

T

∑
t=1

(rt+1 −ZtΓβft+1)
⊺ (rt+1 −ZtΓβft+1) =

min
Γβ ,{ft+1}

1

T

T

∑
t=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt+1
´¸¶
N×1

column vector

− (Zt ⊗ f⊺t+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N×(L×K)

Design Matrix

vec (Γ⊺β)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(L ×K) × 1

column vector

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊺

⋅
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt+1
´¸¶
N×1

column vector

− (Zt ⊗ f⊺t+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N×(L×K)

Design Matrix

vec (Γ⊺β)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(L ×K) × 1

column vector

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

To facilitate our following discussion, we rewrite the least squares objective function above in a
parsimonious way such that

R = ZV. (23)

where

R ∶= (r⊺1 , . . . , r⊺T )
⊺

N × T column vector

Z ∶= [ZG1 , . . . ,ZGL
] (N × T ) × (L ×K) matrix

ZGl
∶= [z̃̃1l ⊗ f⊺2 ; . . . ; z̃̃T l ⊗ f⊺T+1] (N × T ) ×K matrix

V ∶= vec (Γ⊺β) L ×K column vector
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and z̃̃tl (1 ⩽ t ⩽ T,1 ⩽ l ⩽ L) refers to l-th column of Zt and VGl
(1 ⩽ l ⩽ L) are non-overlapping

blocks of equivalent size such that each VGl
as K × 1 vector is the transpose of l-th row of Γβ . With

this representation as in (23) established, we propose to focus on the following ℓ1/ℓq regularized
least squares optimization instead of the original global least squares optimization

min
V,{ft+1}

1

2
∥R −ZV∥22 + λ

L

∑
l=1

wg
l ∥VGl

∥q (24)

where in addition λ and {wg
l }

L

l=1
are introduced to denote regularization parameters and q as

the subscript indicates which norm to be used for regularization. Usually q is specified as q = 2
and accordingly Euclidean norm is applied for block regularization. Moreover, to make our prior
knowledge has the least influence on the embedded regularized least squares selection procedure,
we assume that wg

1 =, . . . ,= w
g
L and this could be relaxed and easily customized via SLEP (Sparse

Learning with Efficient Projections) developed by Liu, Ji, and Ye (2009). We may solve optimization
characterized by (24) in alternating procedure similar to the original ALS. Note that for any given
Γβ (equivalently V as well), the F.O.C. regarding {ft+1} suggested in (6) still applies for this
regularized optimization while for fixed {f̂t+1}, V̂ (equivalently Γ̂β as well since V ∶= vec (Γ⊺β)) can
be numerically solved using the efficient projection procedure suggested in Liu, Ji, and Ye (2009).
Finally with estimated Γ̂β, fund-level indices constructed as the exposure to underlying firm-level
characteristics are deemed as mattering for common exposure to factor structure if the the Euclidean
norm of corresponding row of Γ̂β larger then 0. The corresponding results with factor structure
specified as ranging from 2 to 6 are summarized as following

[Place Table 2 about here]

As we can see from Table 2 that Euclidean norm of factor loadings on “value” (BM_w) and “size”
(Size_w) at fund-level are all significantly positive in terms of magnitude, This suggests that based on
the extended ℓ1/ℓq-regularized IPCA, among the currently investigated 16 characteristics (probably
the most prominent ones among all the 208 documented firm-level characteristics), if there indeed
exists exposure of fund investment to common factors, conventional theory as in Fama and French
(1992, 1993) survives. In comparison to the previous analysis in determining which characteristics
of assets hold by fund matters for the exposure of fund investment based on established statistical
testing framework in IPCA, 12-month as the characteristic measuring the differences of assets hold
by funds survives in the sense that fund managers may still pay attention to momentum-related
strategies in practical investment. Moreover, this also manifests that our proposed ℓ1/ℓq-regularized
IPCA may serve as one referenced alternative as the supplement, which suggest a broader view.

Remark 4.1 It is well known that (see Park and Casella, 2008) regularized least squares optimiza-
tion is closely connected with posterior analysis from Bayesian perspective. The suggested optima
from (24) can be compared in analogy to optima implied from posterior mode by regarding imposed
restrictions as the corresponding prior information specified from Bayesian perspective. In this
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regard, tuning parameter in (24) such as λ reflects the degree of informativeness associated with
specified prior information and the smaller λ is, the less significantly the prior information specified
matters.

Essentially as the tuning parameter, we follow the suggested routine in Liu, Ji, and Ye (2009)
such that we calculate λmax as the maximal value above which the objective function should obtain
zero solution. With this automatically estimated λmax, the optimization problem is regularized via
λ × λmax.

4.4 Exposure to observable factors or not

In this section we report Wald-type statistic Wδ and the corresponding bootstrapped p-value for
checking whether loading characterized by Γδ which maps some observable factors to fund-level
characteristic space is significantly way from 0. We empirically find that when the number of latent
factors is specified as K = 3 and Fama-French 3-factors are nested with latent factors, equity funds
considered in our investigated sample are not significantly exposed to benchmark Fama-French
3-factor structure, in other word, we do not reject the null hypothesis that Γδ = 0 (Wδ = 1.1345 and
p-value = 0.8030). Besides, we have also checked the exposure to Fama-French 3-factor structure
plus momentum factor and we still do not reject the null-hypothesis Γδ = 0 (Wδ = 1.4446 and
p-value = 0.7360). Besides, we also investigate the exposure to q-factors and expected growth
factor proposed in Hou, Xue, and Zhang (2015) 10 but we still cannot reject the null-hypothesis
(Wδ = 3.1779 and p-value = 0.7220).

4.5 IPCA Performance measures

Two different easy-to-implement measures are exploited for measuring IPCA performance in this
fund setting. The first one refers to “Total R2”: the fraction of variance in fund returns described
by exposure to common factors.

Total R2 = 1 − ∑i,t (ri,t+1 − β̂i,tf̂t+1)
2

∑i,t r
2
i,t+1

= 1 −
∑i,t (ri,t+1 − z⊺i,t (Γ̂α + Γ̂β f̂t+1))

2

∑i,t r
2
i,t+1

(25)

The second one refers to “predictive R2”: the fraction of variance in fund return described by
conditional expected returns coming from exposure to common factors

Predictive R2 = 1 − ∑i,t (ri,t+1 − β̂i,tλ̂)
2

∑i,t r
2
i,t+1

= 1 −
∑i,t (ri,t+1 − z⊺i,t (Γ̂α + Γ̂βλ̂))

2

∑i,t r
2
i,t+1

(26)

where γ̂ refers to the vector of estimated risk prices, thus the time-series mean of estimated factors,
γ̂ = 1

T ∑t f̂t. We summarize the corresponding results in the following table.

10 We are grateful to Professor Lu Zhang for maintaining and releasing their data at http://global-q.org/factors.html.
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[Place Table 3 about here]

In the above table, we summarizes total R2s and predictive R2s corresponding different model
specifications identified by number of factors and specification indicating whether to encompass
constant intercept column in IPCA factor loading. For all the different cases with factor number
specified ranging from 2 to 6, we do not reject null hypothesis Γα = 0 based on the bootstrapped
p-value associated with Wα statistic. This finding basically suggests that in modelling funds’
exposure to cross-sectional information of holding assets using IPCA for accommodating dynamic
factor loading, it is relatively not that serious by retaining focus on restricted model with Γα = 0.

5 Conclusion

In this paper, we follow the standard routine in extant literature constructing a set of fund-level
indices measuring the exposure of fund to the characteristics of assets hold by each fund and later
empirically examine how funds are exposed to those firm-level characteristics (anomalies) based
our constructed fund-level indices. Based on our constructed fund-level indices, our empirical
analysis using standard IPCA (Instrumented Principal Component Analysis) and our extended
ℓ1/ℓq-regularized IPCA suggests that investment associated with equity funds are relatively more
exposed at the “Value”-related and “Size”-related level if there exists certain exposure of fund to
common factor structure. To sum up, the fund-level index constructed in this paper may suggest
one alternative way to measure how equity fund is different from each other in terms of the exposure
to characteristics of assets hold by funds. Besides, the empirical work that we conduct in this paper
also extends the practical application of IPCA along with our proposed ℓ1/ℓq-regularized IPCA by
incorporating shrinkage using regularized norm rather than global optimization associated with
ALS (alternating least squares) methodology. This extended IPCA may serve as one alternative
supplement of the standard IPCA methodology.
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Figures and Tables

Figure 1
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Scaled Momentum (12 month)
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(d)

Scaled Momentum (6 month)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0
60

00
0

(e)

Scaled Short term Reversal

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0
60

00
0

(f)

Scaled Size (measured by Market Equity)
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Note: Each histogram collected in panels indexed from (a) to (f) refers to the fund distribution on specific fund-level

index constructed from corresponding firm-level characteristic, which is essentially the weighted average of specific

firm-level characteristic as we have discussed in the main context. What demonstrated here correspond to 6 standard

firm-level characteristics: AM (Assets to market equity); BM (Book to market equity using most recent ME); Mom12m

(12-month momentum); Mom6m (6-month momentum); Mom1m (Short term reversal); Size (Measured by market

equity).
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Figure 2
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Note: In the above figure, we demonstrate time-varying cross-sectional median associated with several major anomalies

to which our constructed fund-level indices are exposed. The gray shaded area refers to NBER recession period

over the selected sample from January 1994 to December 2017. We identify each anomaly at fund level as our

constructed fund-level index with suffix _w attached to each anomaly names. The main implications from this figure

are summarized as following: (1) For fund managers in the U.S. equity market, they persistently intend to hold large

assets (thus high Size_w); (2) Assets hold by fund managers are persistently those assets exposed relatively less to

idiosyncratic volatilities.
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Figure 3

(a)

Scaled Intangible Return using BM
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Scaled Intangible Return using EP
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(c)

Scaled Intangible Return using SP
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(d)

Scaled Intangible Return using CFtoP
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Note: DT2006 demonstrates that the following equation holds in general,

xt = xt−τ + r
x
(t − τ, t) − r(t − τ, t)

where x denotes log fundamental-price ratio (thus (a) log book-to-market ratio; (b) log equity-price ratio; (c) log

sales-to-price ratio; (d) log cash flow-to-price ratio) while rx(t−τ, t) refers to the log fundamental-price ratio return over

the past τ periods and r(t−τ, t) refers to the log stock return over the past τ periods respectively as defined in DT2006.

It is possible to roughly regard the tangible returns associated with x as the fitted component of cross-sectional

regression induced from this equation while the intangible returns associated with x refers to the corresponding

regression residuals. For more detailed and comprehensive discussions, please refer to the original paper of DT2006.

Accordingly, if we treat the these intangible returns as characteristics at firm-level, it is naturally to construct the

corresponding fund-level indices as we have discussed in the main context and the related distributions of funds on

these constructed fund-level indices are demonstrated in each of the above panel in order. Red vertical line indicates

the median.
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Figure 4

0.4

0.5

0.6

0.7

0.8

1995 2000 2005 2010 2015

date

C
ro

ss
−

se
ct

io
na

l M
ed

ia
n 

of
 F

un
d 

Le
ve

l I
nd

ex

IntanBM_w

IntanCFP_w

IntanEP_w

IntanSP_w

Note: In the above figure, we specifically demonstrate time-varying cross-sectional median of anomalies associated

with intangible returns as discussed in DT2006, to which our constructed fund-level indices are exposed. The gray

shaded area refers to NBER recession period over the selected sample from January 1994 to December 2017. We

identify each anomaly at fund level as our constructed fund level index with suffix _w attached to each anomaly names.
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Table 1. Different Factor Structure Specification

K = 2 K = 3 K = 4 K = 5 K = 6

Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value

AM_w 0.0027 0.5360 0.0681 0.0250** 0.3498 0.0000*** 0.2793 0.0020*** 0.5411 0.0000***

BM_w 0.2207 0.0080*** 0.3623 0.0000*** 0.4065 0.0000*** 0.3725 0.0040*** 0.3870 0.0080***

Mom12m_w 0.0052 0.4040 0.0109 0.6140 0.1670 0.1160 0.2010 0.1360 0.2299 0.1360

Mom6m_w 0.0167 0.2720 0.0331 0.3360 0.0748 0.2710 0.2722 0.0570* 0.2608 0.1190

Mom1m_w 0.0101 0.1700 0.0136 0.4190 0.0627 0.1750 0.0761 0.3100 0.0692 0.4360

Size_w 0.0128 0.1160 0.0324 0.1610 0.0400 0.1030 0.2389 0.0020*** 0.2583 0.0000***

ChangeRoA_w 0.0083 0.5170 0.0111 0.7660 0.2195 0.1840 0.4331 0.0180** 0.6161 0.0020***

ChangeRoE_w 0.0091 0.4320 0.0181 0.5840 0.0404 0.5200 0.0672 0.5570 0.2239 0.1210

IdioRisk_w 0.1883 0.3260 0.2460 0.4430 0.2479 0.6940 0.2397 0.8200 0.3460 0.8460

IdioVol3F_w 0.6584 0.0000*** 0.6576 0.0510* 0.6673 0.1520 0.6453 0.3070 0.6199 0.2910

IdioVolAHT_w 0.1027 0.0230** 0.3312 0.0020*** 0.2920 0.0540* 0.3578 0.0100** 0.5345 0.0020***

IdioVolCAPM_w 0.3575 0.0440** 0.6365 0.2320 0.6902 0.2670 0.7021 0.4130 0.7372 0.4390

IntanBM_w 0.1680 0.0020*** 0.1863 0.0140** 0.2349 0.0210** 0.2716 0.0480** 0.2986 0.0630*

IntanCFP_w 0.0706 0.2200 0.1205 0.2950 0.2060 0.3220 0.3006 0.2780 0.3014 0.4280

IntanEP_w 0.0806 0.0520* 0.1540 0.2670 0.1863 0.4490 0.3786 0.4490 0.4007 0.6340

IntanSP_w 0.0882 0.3720 0.1183 0.4280 0.1147 0.6490 0.1641 0.7200 0.1753 0.6130

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table 2

K = 2 K = 3 K = 4 K = 5 K = 6

AM_w 0.0020 0.0000 0.0000 0.0000 0.0000

BM_w 0.0097 0.9999 0.9999 0.9996 0.9992

Mom12m_w 0.0000 0.9999 1.0000 1.0000 0.9999

Mom6m_w 0.0000 0.0000 0.0000 0.0000 1.0000

Mom1m_w 0.0000 0.0000 0.0007 0.9999 0.9999

Size_w 1.0000 1.0000 1.0000 1.0000 1.0000

ChangeRoA_w 0.0000 0.0000 0.0000 0.0000 0.0000

ChangeRoE_w 0.0000 0.0000 0.0000 0.0000 0.0000

IdioRisk_w 0.0000 0.0000 0.0000 0.0000 0.0000

IdioVol3F_w 0.0000 0.0000 0.0000 0.0000 0.0000

IdioVolAHT_w 0.0000 0.0000 0.0000 0.0000 0.0000

IdioVolCAPM_w 0.0000 0.0000 0.0000 0.0000 0.0000

IntanBM_w 0.0000 0.0223 0.0142 0.0339 0.0448

IntanCFP_w 0.0000 0.0000 0.0000 0.0000 0.0000

IntanEP_w 0.0000 0.0000 1.0000 1.0000 1.0000

IntanSP_w 1.0000 0.0000 0.0000 0.0000 0.0082

Pred.R2 1.3563 1.3373 1.3315 1.3179 1.3168

Note: In this table, we report Euclidean norm of each row of estimated Γβ from ℓ1/ℓq-regularized IPCA for different

factor structure specification such that the number of factor ranges from 2 to 6 and each column above refers to one

specification. The last row refers to predictive R2 to be discussed in subsection 4.5. Basically for each column, those

entry with positive number implies the corresponding characteristics of assets hold by fund matter for the exposure of

fund investment to the specified factor structure. These numbers are emphasizes in bold.
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Table 3

K

2 3 4 5 6

Individual Fund Testing
Total R2 Γα = 0 66.50 66.73 66.94 67.13 67.30

Γα ≠ 0 66.51 66.74 66.95 67.14 67.31

Pred. R2 Γα = 0 1.42 1.42 1.42 1.39 1.39

Γα ≠ 0 1.39 1.39 1.39 1.35 1.37

Managed Portfolio Testing
Total R2 Γα = 0 99.99 99.99 100.00 100.00 100.00

Γα ≠ 0 99.99 99.99 100.00 100.00 100.00

Pred. R2 Γα = 0 2.57 2.56 2.58 2.53 2.54

Γα ≠ 0 2.51 2.51 2.51 2.46 2.49

Intercept Γα Testing
Wα p-value 0.84 0.76 0.83 0.79 0.61

Note: In this table, we summarize the IPCA performance in terms of total R2s and predictive R2s. Besides, we

report p-values associated with Wald statistic Wα for testing statistical significance of intercept term contained in

IPCA factor loading. All the numbers as the entries of above table except for the last row reporting p-value are

corresponding R2s in percentage.
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Appendix

A Auxiliary Proofs

Next we proceed to check the first order derivative taken with respect to vec (Γ⊺β) with fixed f̂t+1.
The associated F.O.C. for each t writes as following. Moreover, to facilitate our later discussion we
carry over our discussion by rewriting the formula as following

rt+1 −ZtΓβft+1 = rt+1 − vec (f⊺t+1Γ⊺βZ
⊺

t ) = rt+1 − (Zt ⊗ f⊺t+1)vec (Γ⊺β)

which implies that the F.O.C. taken with respect to Γ⊺β can be equivalently represented as following
as well 1

T−1

∑
t=1

(Zt ⊗ f⊺t+1)
⊺

rt+1 =
T−1

∑
t=1

[(Zt ⊗ f⊺t+1)
⊺ (Zt ⊗ f⊺t+1)]vec (Γ⊺β)

=
T−1

∑
t=1

[(Z⊺t ⊗ ft+1) (Zt ⊗ f⊺t+1)]vec (Γ⊺β)

=
T−1

∑
t=1

(Z⊺tZt ⊗ ft+1f
⊺

t+1)vec (Γ⊺β)

Thus

vec (Γ̂⊺β) =
⎛
⎜
⎝

T−1

∑
t=1

Z⊺tZt ⊗ ft+1f
⊺

t+1

⎞
⎟
⎠

−1
⎛
⎜
⎝

T−1

∑
t=1

(Z⊺t ⊗ ft+1) rt+1
⎞
⎟
⎠

=
⎛
⎜
⎝

T−1

∑
t=1

Z⊺tZt ⊗ ft+1f
⊺

t+1

⎞
⎟
⎠

−1
⎛
⎜
⎝

T−1

∑
t=1

(Z⊺t ⊗ rt+1) ft+1
⎞
⎟
⎠

1 Keep in mind the following property covered in equation (4) in chapter 2 of Magnus and Neudecker (2007),

(A⊗B) (C ⊗D) = AC ⊗BD (F.1)

if AC and BD exists.
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B 16 Basic Anomalies plus 3 Basic Fund Characteristics

Table B.1. Different Factor Structure Specification

K = 2 K = 3 K = 4 K = 5 K = 6

Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value

AM_w 0.0126 0.2560 0.0816 0.0400** 0.1938 0.0410** 0.2857 0.0260** 0.5488 0.0000***

BM_w 0.1422 0.0080*** 0.1802 0.0190** 0.3800 0.0030*** 0.3690 0.0210** 0.4077 0.0210**

Mom12m_w 0.0091 0.2360 0.0277 0.2440 0.0355 0.3250 0.0652 0.3360 0.0357 0.7150

Mom6m_w 0.0332 0.0630* 0.0848 0.1000 0.1155 0.0950* 0.1094 0.1690 0.0985 0.3270

Mom1m_w 0.0181 0.0240** 0.0369 0.0620* 0.0446 0.1260 0.0518 0.1970 0.0616 0.3220

Size_w 0.1710 0.0000*** 0.2435 0.0000*** 0.2207 0.0020*** 0.3227 0.0000*** 0.2495 0.0050***

ChangeRoA_w 0.0082 0.3750 0.0166 0.5250 0.0351 0.5800 0.0928 0.2550 0.1534 0.3970

ChangeRoE_w 0.0166 0.1720 0.0476 0.1770 0.0521 0.3390 0.0631 0.4730 0.0723 0.6490

IdioRisk_w 0.2206 0.2810 0.1796 0.6380 0.3459 0.5410 0.3464 0.7130 0.5715 0.6620

IdioVol3F_w 0.0173 0.7950 0.4423 0.0840* 0.6047 0.0720* 0.6202 0.0820* 0.7138 0.1490

IdioVolAHT_w 0.0636 0.0340** 0.0580 0.2210 0.2252 0.0460** 0.3019 0.0950* 0.4404 0.0060***

IdioVolCAPM_w 0.3828 0.3030 0.4308 0.5120 0.4582 0.6830 0.6423 0.4090 0.7839 0.3260

IntanBM_w 0.1011 0.0090*** 0.1610 0.0960* 0.1987 0.0190** 0.2429 0.0230** 0.3915 0.0230**

IntanCFP_w 0.2479 0.0540* 0.2971 0.1750 0.2904 0.1770 0.3278 0.2880 0.5141 0.2730

IntanEP_w 0.1125 0.1040 0.1517 0.2580 0.1766 0.3050 0.3759 0.2890 0.2853 0.5630

IntanSP_w 0.0670 0.0720* 0.0612 0.2640 0.1037 0.3970 0.1945 0.3400 0.0754 0.9000
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Table B.1. Different Factor Structure Specification (continued)

K = 2 K = 3 K = 4 K = 5 K = 6

Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value

mtna_normalized 0.0077 0.0110** 0.0334 0.0060*** 0.0195 0.0010*** 0.0325 0.0000*** 0.0468 0.0000***

flow_normalized 0.2416 0.0000*** 0.2361 0.0000*** 0.2589 0.0000*** 0.2883 0.0000*** 0.2125 0.0000***

age_normalized 0.1269 0.0000*** 0.2299 0.0000*** 0.2411 0.0000*** 0.2675 0.0000*** 0.3372 0.0000***
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C Comprehensive 40 characteristics

Table C.1. Different Factor Structure Specification 40

K = 2 K = 3 K = 4 K = 5 K = 6

Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value

Size_w 0.0315 0.3290 0.0569 0.1430 0.1407 0.3460 0.2311 0.2120 0.2193 0.3710

BM_w 0.0398 0.5290 0.1736 0.0370** 0.1469 0.5460 0.0968 0.8190 0.0961 0.9060

GP_w 0.0406 0.2790 0.0859 0.4430 0.1957 0.0900* 0.0373 0.8530 0.0612 0.9450

Profitability_w 0.0458 0.2300 0.1221 0.0640* 0.0247 0.8090 0.0619 0.7500 0.1226 0.5880

PS_w 0.0008 0.6020 0.0006 0.6880 0.0099 0.2430 0.0052 0.6720 0.0148 0.3790

DebtIssuance_w 0.0242 0.2330 0.0417 0.3600 0.0950 0.0800* 0.1171 0.1540 0.1284 0.2520

ShareRepurchase_w 0.0013 0.8570 0.0098 0.7350 0.0338 0.4750 0.0284 0.6900 0.0861 0.4020

ShareIss1Y_w 0.0261 0.2290 0.0336 0.3020 0.0043 0.9650 0.0366 0.6830 0.0605 0.6780

Accruals_w 0.0069 0.3010 0.1319 0.0100** 0.0235 0.2300 0.0209 0.5250 0.0397 0.4880

AssetGrowth_w 0.0047 0.6430 0.0444 0.5470 0.0257 0.6050 0.0673 0.4010 0.0823 0.4340

ChAssetTurnover_w 0.0063 0.3090 0.1380 0.0020*** 0.0120 0.4690 0.0220 0.4400 0.0171 0.7210

DivYield_w 0.0039 0.1150 0.0070 0.0530* 0.0066 0.3030 0.0040 0.6530 0.0084 0.4550

EP_w 0.0107 0.5570 0.0313 0.3710 0.0101 0.9390 0.0195 0.9250 0.0495 0.8420

CF_w 0.0801 0.1320 0.1144 0.1660 0.0721 0.6080 0.3260 0.0900* 0.3015 0.1620

NOA_w 0.0424 0.0860* 0.1050 0.0130** 0.1042 0.0950* 0.1246 0.1120 0.1428 0.1850

Investment_w 0.0065 0.3080 0.0203 0.4960 0.0089 0.6200 0.0024 0.9760 0.0088 0.8950
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Table C.1. Different Factor Structure Specification 40 (continued)

K = 2 K = 3 K = 4 K = 5 K = 6

Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value

InvGrowth_w 0.0057 0.3770 0.0241 0.2350 0.0035 0.8850 0.0133 0.6550 0.0067 0.9500

Leverage_w 0.1708 0.1980 0.3090 0.0080*** 0.1497 0.5690 0.1816 0.6780 0.3142 0.6790

SP_w 0.1293 0.0470** 0.0281 0.5060 0.1458 0.1970 0.1672 0.2500 0.1796 0.4550

GrLTNOA_w 0.0243 0.1290 0.0929 0.0410** 0.0216 0.4850 0.0159 0.7450 0.0136 0.9140

Mom6m_w 0.0436 0.2600 0.0564 0.3430 0.0143 0.8870 0.1004 0.4700 0.0831 0.7310

IndMom_w 0.0044 0.6300 0.0178 0.4270 0.0185 0.6990 0.0271 0.7660 0.0142 0.9800

ShortInterest_w 0.0098 0.4120 0.0137 0.4690 0.1490 0.0300** 0.0638 0.4110 0.0891 0.4150

Mom12m_w 0.0080 0.7410 0.0642 0.2180 0.0837 0.4810 0.0827 0.7690 0.2310 0.2850

Mom1m_w 0.0066 0.4630 0.0084 0.6700 0.0030 0.9630 0.0155 0.8320 0.0135 0.9410

Mom18m13m_w 0.0041 0.6920 0.0111 0.7300 0.0137 0.7740 0.0761 0.3250 0.1216 0.2890

EarningsSurprise_w 0.0003 0.9430 0.0686 0.1650 0.0082 0.8360 0.0247 0.7180 0.0711 0.4070

ChangeRoA_w 0.0031 0.7810 0.0617 0.4480 0.0406 0.6440 0.0460 0.7140 0.1159 0.4450

ChangeRoE_w 0.0021 0.8020 0.0229 0.8090 0.0305 0.6250 0.0062 0.9850 0.0291 0.9320

IdioRisk_w 0.1279 0.7970 0.1786 0.8350 0.5263 0.8390 0.6479 0.6280 0.6724 0.8820

IdioVol3F_w 0.2821 0.4620 0.4718 0.1860 0.5138 0.6450 0.5106 0.8120 0.5147 0.8920

IdioVolAHT_w 0.0408 0.5820 0.0594 0.4550 0.1467 0.5910 0.3483 0.2880 0.3306 0.5180

IdioVolCAPM_w 0.3107 0.7820 0.2383 0.8200 0.5688 0.8050 0.6225 0.8600 0.7196 0.9620

CompEquIss_w 0.0167 0.2470 0.0083 0.5780 0.0167 0.6870 0.1099 0.1200 0.1047 0.3350
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Table C.1. Different Factor Structure Specification 40 (continued)

K = 2 K = 3 K = 4 K = 5 K = 6

Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value Wβ,l p-value

CompositeDebtIssuance_w 0.0063 0.3030 0.0143 0.3990 0.0081 0.7180 0.0407 0.2380 0.0240 0.6220

ShareVol_w 0.0384 0.0940* 0.0233 0.4390 0.0881 0.0840* 0.0811 0.1820 0.0435 0.6460

EquityDuration_w 0.0105 0.7290 0.0023 0.9630 0.0915 0.4510 0.0779 0.6960 0.2372 0.3490

mtna_normalized 0.0112 0.0070*** 0.0028 0.0070*** 0.0416 0.0030*** 0.0352 0.0090*** 0.0339 0.0220**

flow_normalized 0.1730 0.0000*** 0.0392 0.0040*** 0.1710 0.0000*** 0.1768 0.0000*** 0.2386 0.0000***

age_normalized 0.1985 0.0000*** 0.0661 0.0010*** 0.2311 0.0000*** 0.3276 0.0000*** 0.3591 0.0000***

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1A
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D Comprehensive List of Characteristics

Table D.1. Detailed Descriptions of used Anomalies

No. Acronym Authors Year Long Description Journal

1 AbnormalAccruals Xie 2001 Abnormal Accruals AR

2 AbnormalAccrualsPercent Hafzalla, Lundholm and Van Winkle 2011 Percent Abnormal Accruals AR

3 Accruals Sloan 1996 Accruals AR

4 AccrualsBM Bartov and Kim 2004 Book-to-market and accruals RFQA

5 Activism1 Cremers and Nair 2005 Shareholder activism 1 JF

6 Activism2 Cremers and Nair 2005 Shareholder activism 2 JF

7 AdExp Chan, Lakonishok and Sougiannis 2001 Advertising Expense JF

8 AgeIPO Ritter 1991 IPO and age JF

9 AM Fama and French 1992 Total assets to market JF

10 AnalystValue Frankel and Lee 1998 Analyst Value JAE

11 AnnouncementReturn Chan, Jegadeesh and Lakonishok 1996 Earnings announcement return JF

12 AOP Frankel and Lee 1998 Analyst Optimism JAE

13 AssetGrowth Cooper, Gulen and Schill 2008 Asset Growth JF

14 Beta Fama and MacBeth 1973 CAPM beta JPE

15 BetaBDLeverage Adrian, Etula and Muir 2014 Broker-Dealer Leverage Beta JF

16 BetaFP Frazzini and Pedersen 2014 Frazzini-Pedersen Beta JFE

17 BetaLiquidityPS Pastor and Stambaugh 2003 Pastor-Stambaugh liquidity beta JPE

18 BetaTailRisk Kelly and Jiang 2014 Tail risk beta RFS

19 betaVIX Ang et al. 2006 Systematic volatility JF

20 BidAskSpread Amihud and Mendelsohn 1986 Bid-ask spread JFE
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

21 BM Rosenberg, Reid, and Lanstein 1985 Book to market using most recent ME JF

22 BMdec Rosenberg, Reid, and Lanstein 1985 Book to market using December ME JPM

23 BookLeverage Fama and French 1992 Book leverage (annual) JF

24 BPEBM Penman, Richardson and Tuna 2007 Leverage component of BM JAR

25 BrandInvest Belo, Lin and Vitorino 2014 Brand capital investment RED

26 Cash Palazzo 2012 Cash to assets JFE

27 CashProd Chandrashekar and Rao 2009 Cash Productivity WP

28 CBOperProfNoLag Ball et al. 2016 Cash-based operating profitability JFE

29 CF Lakonishok, Shleifer and Vishny 1994 Cash flow to market JF

30 cfp Desai, Rajgopal and Venkatachalam 2004 Operating Cash flows to price AR

31 ChangeInRecommendation Jegadeesh et al. 2004 Change in recommendation JF

32 ChangeRoA Hou, Xue and Zhang 2018 Change in Return on assets RFS

33 ChangeRoE Hou, Xue and Zhang 2018 Change in Return on equity RFS

34 ChAssetTurnover Soliman 2008 Change in Asset Turnover AR

35 ChEQ Lockwood and Prombutr 2010 Sustainable Growth JFR

36 ChForecastAccrual Barth and Hutton 2004 Change in Forecast and Accrual RAS

37 ChInv Thomas and Zhang 2002 Inventory Growth RAS

38 ChInvIA Abarbanell and Bushee 1998 Change in capital inv (ind adj) AR

39 ChNAnalyst Scherbina 2008 Decline in Analyst Coverage ROF

40 ChNNCOA Soliman 2008 Change in Net Noncurrent Operating Assets AR

41 ChNWC Soliman 2008 Change in Net Working Capital AR

42 ChTax Thomas and Zhang 2011 Change in Taxes JAR
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

43 CompEquIss Daniel and Titman 2006 Composite equity issuance JF

44 CompositeDebtIssuance Lyandres, Sun and Zhang 2008 Composite debt issuance RFS

45 ConsRecomm Barber et al. 2002 Consensus Recommendation JF

46 ConvDebt Valta 2016 Convertible debt indicator JFQA

47 Coskewness Harvey and Siddique 2000 Coskewness JF

48 CredRatDG Dichev and Piotroski 2001 Credit Rating Downgrade JF

49 CustomerMomentum Cohen and Frazzini 2008 Customer momentum JF

50 DebtIssuance Spiess and Affleck-Graves 1999 Debt Issuance JFE

51 DelBreadth Chen, Hong and Stein 2002 Breadth of ownership JFE

52 DelCOA Richardson et al. 2005 Change in current operating assets JAE

53 DelCOL Richardson et al. 2005 Change in current operating liabilities JAE

54 DelDRC Prakash and Sinha 2012 Deferred Revenue CAR

55 DelEqu Richardson et al. 2005 Change in equity to assets JAE

56 DelFINL Richardson et al. 2005 Change in financial liabilities JAE

57 DelLTI Richardson et al. 2005 Change in long-term investment JAE

58 DelNetFin Richardson et al. 2005 Change in net financial assets JAE

59 DivInd Hartzmark and Salomon 2013 Dividends JFE

60 DivInit Michaely, Thaler and Womack 1995 Dividend Initiation JF

61 DivOmit Michaely, Thaler and Womack 1995 Dividend Omission JF

62 DivYield Naranjo, Nimalendran and Ryngaert 1998 Dividend Yield JF

63 dNoa Hirshleifer, Hou, Teoh, Zhang 2004 change in net operating assets JAE

64 DolVol Brennan, Chordia and Subrahmanyam 1998 Past trading volume JFE
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

65 DownForecast Barber et al. 2002 Down forecast EPS JF

66 EarnIncrease Loh and Warachka 2012 Earnings streak indicator MS

67 EarningsConsistency Alwathainani 2009 Earnings growth for consistent growers BAR

68 EarningsForecastDisparity Da and Warachka 2011 Long vs short-term earnings expectations JFE

69 EarningsSurprise Foster, Olsen and Shevlin 1984 Earnings Surprise AR

70 EarnSupBig Hou 2007 Earnings surprise of big firms RFS

71 EBM Penman, Richardson and Tuna 2007 Enterprise component of BM JAR

72 EntMult Loughran and Wellman 2011 Enterprise Multiple JFQA

73 EP Basu 1977 Earnings-to-Price Ratio JF

74 EquityDuration Dechow, Sloan and Soliman 2004 Equity Duration RAS

75 ExchSwitch Dharan and Ikenberry 1995 Exchange Switch JF

76 ExclExp Doyle, Lundholm and Soliman 2003 Excluded Expenses RAS

77 fgr5yrLag La Porta 1996 Long-term EPS forecast JF

78 FirmAgeMom Zhang 2004 Firm Age - Momentum JF

79 ForecastDispersion Diether, Malloy and Scherbina 2002 EPS Forecast Dispersion JF

80 FR Franzoni and Marin 2006 Pension Funding Status JF

81 FRbook Franzoni and Marin 2006 Pension Funding Status JF

82 Frontier Nguyen and Swanson 2009 Efficient frontier index JFQA

83 G_Binary Gompers, Ishii and Metrick 2003 Governance Index QJE

84 GP Novy-Marx 2013 gross profits / total assets JFE

85 GrAdExp Lou 2014 Growth in advertising expenses RFS

86 grcapx Anderson and Garcia-Feijoo 2006 Change in capex (two years) JF
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

87 grcapx1y Anderson and Garcia-Feijoo 2006 Investment growth (1 year) AR

88 grcapx3y Anderson and Garcia-Feijoo 2006 Change in capex (three years) JF

89 GrGMToGrSales Abarbanell and Bushee 1998 Gross Margin growth over sales growth AR

90 GrLTNOA Fairfield, Whisenant and Yohn 2003 Growth in Long term net operating assets AR

91 GrSaleToGrInv Abarbanell and Bushee 1998 Sales growth over inventory growth AR

92 GrSaleToGrOverhead Abarbanell and Bushee 1998 Sales growth over overhead growth AR

93 Herf Hou and Robinson 2006 Industry concentration (Herfindahl) sales JF

94 HerfAsset Hou and Robinson 2006 Industry concentration (Herfindahl) assets JF

95 HerfBE Hou and Robinson 2006 Industry concentration (Herfindahl) book JF

96 High52 George and Hwang 2004 52 week high JF

97 hire Bazdresch, Belo and Lin 2014 Employment growth JPE

98 IdioRisk Ang et al. 2006 Idiosyncratic risk JF

99 IdioVol3F Ang et al. 2006 Idiosyncratic risk (3 factor) JF

100 IdioVolAHT Ali, Hwang, and Trombley 2003 Idiosyncratic risk (AHT) JFE

101 IdioVolCAPM Ang et al. 2006 Idiosyncratic risk (CAPM) JF

102 Illiquidity Amihud 2002 Amihud’s illiquidity JFM

103 IndIPO Ritter 1991 Initial Public Offerings JF

104 IndMom Grinblatt and Moskowitz 1999 Industry Momentum JFE

105 IndRetBig Hou 2007 Industry return of big firms RFS

106 IntanBM Daniel and Titman 2006 Intangible return using BM JF

107 IntanCFP Daniel and Titman 2006 Intangible return using CFtoP JF

108 IntanEP Daniel and Titman 2006 Intangible return using EP JF
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

109 IntanSP Daniel and Titman 2006 Intangible return using Sale2P JF

110 IntMom Novy-Marx 2012 Intermediate Momentum JFE

111 Investment Titman, Wei and Xie 2004 Investment to revenue JFQA

112 InvestPPEInv Lyandres, Sun and Zhang 2008 change in ppe and inv/assets RFS

113 InvGrowth Belo and Lin 2012 Inventory Growth RFS

114 iomom_cust Menzly and Ozbas 2010 Customers momentum JF

115 iomom_supp Menzly and Ozbas 2010 Suppliers momentum JF

116 KZ Lamont, Polk and Saa-Requejo 2001 Kaplan Zingales index RFS

117 Leverage Bhandari 1988 Market leverage JFE

118 MaxRet Bali, Cakici, and Whitelaw 2010 Maximum return over month JF

119 MeanRankRevGrowth Lakonishok, Shleifer and Vishny 1994 Revenue Growth Rank JF

120 Mom12m Jegadeesh and Titman 1993 Momentum (12 month) JF

121 Mom18m13m De Bondt and Thaler 1985 Momentum-Reversal JF

122 Mom1m Jegadeesh 1989 Short term reversal JF

123 Mom36m De Bondt and Thaler 1985 Long-run reversal JF

124 Mom6m Jegadeesh and Titman 1993 Momentum (6 month) JF

125 Mom6mJunk Avramov et al 2007 Junk Stock Momentum JF

126 MomRev Chan and Ko 2006 Momentum and LT Reversal JOIM

127 MomSeas Heston and Sadka 2008 Return seasonality JFE

128 MomSeasAlt11to15a Heston and Sadka 2008 Return seasonality years 11 to 15 JFE

129 MomSeasAlt16to20a Heston and Sadka 2008 Return seasonality years 16 to 20 JFE

130 MomSeasAlt16to20n Heston and Sadka 2008 Returns in not-same month years 16 to 20 JFE
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

131 MomSeasAlt1a Heston and Sadka 2008 Return seasonality last year JFE

132 MomSeasAlt1n Heston and Sadka 2008 Returns in not-same month last year JFE

133 MomSeasAlt2to5n Heston and Sadka 2008 Returns in not-same years 2 to 5 JFE

134 MomSeasAlt6to10a Heston and Sadka 2008 Return seasonality years 6 to 10 JFE

135 MomSeasAlt6to10n Heston and Sadka 2008 Returns in different months years 6 to 10 JFE

136 MomVol Lee and Swaminathan 2000 Momentum and Volume JF

137 MS Mohanram 2005 Mohanram G-score RAS

138 NetDebtFinance Bradshaw, Richardson and Sloan 2006 Net debt financing JAE

139 NetDebtPrice Penman, Richardson and Tuna 2007 Net debt to price JAR

140 NetEquityFinance Bradshaw, Richardson and Sloan 2006 Net equity financing JAE

141 NetPayoutYield Boudoukh et al. 2007 Net Payout Yield JF

142 NOA Hirshleifer et al. 2004 Net Operating Assets JAE

143 NumEarnIncrease Loh and Warachka 2012 Number of consecutive earnings increases MS

144 OperProf Fama and French 2006 operating profits / book equity JFE

145 OperProfRDNoLag Ball et al. 2016 Cash-based operating profitability JFE

146 OPLeverage Novy-Marx 2010 Operating Leverage ROF

147 OptionVolume1 Johnson and So 2012 Option Volume to Stock Volume JFE

148 OptionVolume2 Johnson and So 2012 Option Volume relative to recent average JFE

149 OrderBacklog Rajgopal, Shevlin and Venkatachalam 2003 Order backlog RAS

150 OrgCap Eisfeldt and Papanikolaou 2013 Organizational Capital JF

151 OrgCapAdj Eisfeldt and Papanikolaou 2013 Organizational Capital industry adj JF

152 OScore Dichev 1998 O Score JFE
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

153 PatentsRD Hirschleifer, Hsu and Li 2013 Patents to RD expenses JFE

154 PayoutYield Boudoukh et al. 2007 Payout Yield JF

155 PctAcc Hafzalla, Lundholm and Van Winkle 2011 Percent Operating Accruals AR

156 PctTotAcc Hafzalla, Lundholm and Van Winkle 2011 Percent Total Accruals AR

157 PredictedFE Frankel and Lee 1998 Predicted Analyst forecast error JAE

158 Price Blume and Husic 1972 Price JF

159 PriceDelay Hou and Moskowitz 2005 Price delay coeff RFS

160 PriceDelayAdj Hou and Moskowitz 2005 Price delay SE adjusted RFS

161 PriceDelayRsq Hou and Moskowitz 2005 Price delay r square RFS

162 ProbInformedTrading Easley, Hvidkjaer and O’Hara 2002 Probability of Informed Trading JF

163 Profitability Balakrishnan, Bartov and Faurel 2010 Return on assets JAE

164 PS Piotroski 2000 Piotroski F-score AR

165 RD Chan, Lakonishok and Sougiannis 2001 R&D over market cap JF

166 RDAbility Cohen, Diether and Malloy 2013 R&D ability RFS

167 RDcap Li 2011 R&D capital-to-assets RFS

168 RDIPO Gou, Lev and Shi 2006 IPO and no R&D spending JBFA

169 RDS Landsman et al. 2011 Real dirty surplus AR

170 realestate Tuzel 2010 Real estate holdings RFS

171 ResidualMomentum11m Blitz, Huij and Martens 2011 11 month residual momentum JEmpFin

172 ResidualMomentum6m Blitz, Huij and Martens 2011 6 month residual momentum JEmpFin

173 retConglomerate Cohen and Lou 2012 Conglomerate return JFE

174 ReturnSkew Bali, Engle and Murray 2015 Skewness of daily returns Book
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

175 ReturnSkew3F Bali, Engle and Murray 2015 Skewness of daily idiosyncratic returns (3F model) Book

176 REV6 Chan, Jegadeesh and Lakonishok 1996 Earnings forecast revisions JF

177 RevenueSurprise Jegadeesh and Livnat 2006 Revenue Surprise JFE

178 RIO_BM Nagel 2005 Inst Own and BM JF

179 RIO_Disp Nagel 2005 Inst Own and Forecast Dispersion JF

180 RIO_IdioRisk Nagel 2005 Inst Own and Idio Vol JF

181 RIO_Turnover Nagel 2005 Inst Own and Turnover JF

182 roaq Balakrishnan, Bartov and Faurel 2010 Return on assets incl extraordinary income JAE

183 secured Valta 2016 Secured debt JFQA

184 securedind Valta 2016 Secured debt indicator JFQA

185 sfe Elgers, Lo and Pfeiffer 2001 Earnings Forecast to price AR

186 ShareIss1Y Pontiff and Woodgate 2008 Share issuance (1 year) JF

187 ShareIss5Y Daniel and Titman 2006 Share issuance (5 year) JF

188 ShareRepurchase Ikenberry, Lakonishok and Vermaelen 1995 Share repurchases JFE

189 ShareVol Datar, Naik and Radcliffe 1998 Share Volume JFM

190 ShortInterest Dechow et al. 2001 Short Interest JFE

191 sinAlgo Hong and Kacperczyk 2009 Sin Stock (selection criteria) JFE

192 Size Banz 1981 Size JFE

193 skew1 Xing, Zhang and Zhao 2010 Volatility smirk near the money JFQA

194 SmileSlope Yan 2011 Put volatility minus call volatility JFE

195 SP Barbee, Mukherji and Raines 1996 Sales-to-price FAJ

196 Spinoff Cusatis, Miles and Woolridge 1993 Spinoffs JFE
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Table D.1. Detailed Descriptions of used Anomalies (continued)

No. Acronym Authors Year Long Description Journal

197 std_turn Chordia, Subrahmanyam and Anshuman 2001 Share turnover volatility JFE

198 SurpriseRD Eberhart, Maxwell and Siddique 2004 Unexpected R&D increase JF

199 tang Hahn and Lee 2009 Tangibility JF

200 Tax Lev and Nissim 2004 Taxable income to income AR

201 TotalAccruals Richardson et al. 2005 Total accruals JAE

202 UpForecast Barber et al. 2002 Up Forecast JF

203 VolSD Chordia, Subrahmanyam and Anshuman 2001 Volume Variance JFE

204 XFIN Bradshaw, Richardson and Sloan 2006 Net external financing JAE

205 zerotrade Liu 2006 Days with zero trades JFE

206 zerotradeAlt1 Liu 2006 Days with zero trades JFE

207 zerotradeAlt12 Liu 2006 Days with zero trades JFE

208 ZScore Dichev 1998 Altman Z-Score JFE
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E More Graphical Results for Demonstration

Figure E.1
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Exposure to Value

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q1 0 0 0 0 0 2 1 0 0 1

Q2 2 0 0 0 0 12 28 0 4 5

Q3 3 0 0 14 30 159 36 4 20 24

Q4 7 4 16 83 153 96 105 152 144 38

Q5 6 47 94 203 256 361 292 142 44 66

Q6 20 39 454 495 470 712 454 195 64 68

Q7 25 362 1726 2666 4482 3073 1067 258 159 83

Q8 238 3228 8635 8771 9682 4756 1202 334 112 72

Q9 1044 8941 17510 16180 12644 5552 2090 761 346 185

Ex
po

su
re

to
Si

ze

Q10 4193 35361 55274 56077 28991 10203 2800 774 273 76

Si
ze

Vaue

Note: In the figure above, we demonstrate distribution of all the mutual funds in our investigated sample over

the corresponding fund-level indices constructed as the exposure to the “Size”-related (measured by market equity)

and “Value”-related (measured by book-to-market ratio) characteristics of holdings assets. Specifically we equally

dissect each fund-level index into 10 quantiles ranging from low to high (denoted by Q1 to Q10) and then calculate

number of funds of different categories characterized by “Size”-related and “Value”-related indices. Each entry of the

accompanied 10x10 matrix demonstrated above collects total number of observed funds in the associated category.
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Figure E.2. Cross-sectional distribution of funds on “Size”-related index
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Figure E.3. Cross-sectional distribution of funds on “Value”-related index
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Figure E.4. Cross-sectional distribution of funds on “Momentum”-related index
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F One Supplementary Simulation

In this section, we proceed to demonstrate one example illustrating how our proposed ℓ1/ℓq-
regularized IPCA works in terms of correctly selecting the corresponding characteristic dimensions
that matter to the exposure to factors. The basic procedure simulating data is as following

Step 1. Sample Γβ with each entry of Γβ sampled from standard normal distribution, which is
a L ×K matrix with L and K specified as L = 16 and K = 3 respectively.

Step 2. Sample factors as K × T matrix with each entry sampled from standard uniform
distribution.

Step 3. Sample simulated signals (characteristics) as N ×L × T array with each entry sample
from standard uniform distribution. Thus for each sliced matrix with time index fixed
at t is Zt is a N ×L matrix.

Step 4. Calculate dynamic factor loading as N ×K matrix such that ZtΓβ + 0.01*randn(N,K),
where randn refers to the standard built-in random number generating function in
MATLAB for generating random numbers from standard normal distribution.

Step 5. Generate simulated return as specified (4) using simulated Zt, Γβ and correspondingly
factor loading in the previous steps.

Sample size for our Monte Carlo experiment is specified as N = 300 and T = 360 and we specif
l = 1,3,4,12,15,16 as the indices for rows of Γβ that are equipped with non-zero ℓ2-norm. The
suggested indices based on the non-zero ℓ2-norm of row vectors of estimated Γ̂β are l = 1,3,4,12,15,16.

Γβ Γ̂β

1 0.465 0.468 0.463
2 0.000 0.000 0.000
3 -0.694 0.115 0.408
4 -0.455 -0.247 0.100
5 0.000 0.000 0.000
6 0.000 0.000 0.000
7 0.000 0.000 0.000
8 0.000 0.000 0.000
9 0.000 0.000 0.000

10 0.000 0.000 0.000
11 0.000 0.000 0.000
12 0.302 -0.811 0.221
13 0.000 0.000 0.000
14 0.000 0.000 0.000
15 0.041 -0.211 0.477
16 0.047 0.073 0.577

1 0.821 -0.088 0.030
2 0.000 0.000 0.000
3 -0.071 -0.343 -0.627
4 -0.320 -0.449 -0.357
5 0.000 0.000 0.000
6 0.000 0.000 0.000
7 0.000 0.000 0.000
8 0.000 0.000 0.000
9 0.000 0.000 0.000

10 0.000 0.000 0.000
11 0.000 0.000 0.000
12 -0.178 -0.646 0.673
13 0.000 0.000 0.000
14 0.000 0.000 0.000
15 0.160 -0.304 0.013
16 0.402 -0.404 -0.162
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Bh

1 2

A B C D E F

1 0.356 0.648 0.169 0.441 -1.421

2 -1.6222 -0.336 0.764 -0.500 0.431

3 0.883 0.130 0.851 1.495 4.053

4 -0.790 -1.334 0.286 -0.119 0.398

5 -0.779 -1.708 -0.129 -0.543 -0.682
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