
Estimating Expected Return Function
Nonparametrically: Based on BART ∗

Yaohan Chen

School of Economics, Singapore Management University

Last version: August 20, 2019

This version: June 4, 2020

Abstract

This paper documents the empirical Implementation of estimating expected return function
nonparametrically using Bayesian Additive Regression Tree (BART) method. Within this newly
introduced nonparametric framework, general non-linearity is allowed for the specification of
model when the dimension of covariates used for prediction is large and the underlying non-linear
relationship is hard to detect. By applying BART, we document which firm-level characteristics
should be adopted as the most influential predictors for estimating expected return and the out-of-
sample performance of BART for prediction as well. I have also extended the whole framework to
China stock market and global financial market for empirically comparison. Our finding suggest
that (i) the performance of BART approximates the results obtained from neural-network, which
is a specific machine-learning method documented with dominating out-of-sample prediction
performance; (ii) Machine-learning based method (specifically BART) surely outperform the
benchmark linear model, but in terms of investment strategy constructed from prediction, there
is not much significant difference between machine-learning methods and linear benchmark; (iii)
China stock market is relatively more predictable in comparison to the U.S. stock market in
terms of out-of-sample prediction-accuracy measure.
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ing
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1 Introduction

Prediction has always been the concern in finance research. One of the two Formidable challenges
faced within community is how to increase the out-of-sample prediction accuracy and the other
is the high-dimension of potential predictors to be used for prediction. To address the first issue,
potential nonliearity of model has to be adopted so that to allow model mimic data as possible
as it could. That is one reason it becomes more popular recently to set up nonparametric models
for the purpose of making prediction and estimating the expected return. The second issue has
attracted more concern given that many available firm-level characteristics have been proposed
in literature. Cochrane (2017) points out this multidimensional challenge in this lecture that
“Which characteristics really provide independent information about average returns and Which
are subsumed by others”. Harvey et al. (2016) points out the p-hacking issues in applying the
conventional statistic-test based method to identify characteristics and apply their adjusted p values
to identify firm-level characteristics that potentially affect the expected returns. All these recent
concerns are actually about model uncertainty or the fundamentally unknown data generating
process of return in stock market. This issue has been noticed by some earlier literature such as
(Cremers, 2002; Stambaugh, 1999; Stambaugh and Pastor, 2000) and some solutions from Bayesian
perspective have been proposed as well. Basically, To address the high-dimension problem, some
model selection techniques should be adopted. Conventionally, researchers tend to solve these two
problems either separately or simultaneously in linear framework. However, with the development of
modern computational power and statistical algorithms, many researches in this field begin to apply
some complex models to make prediction and covariates selection simultaneously while allowing
nonlinearity (see Freyberger et al., 2019). Machine learning method is one of these attempts made
in community of current era.

Machine learning method usually has good performance in terms of out-of-sample fitting. It is
flexible given the generic nonparametric setting, which is essentially the feature for many machine
learning algorithms. Moreover, It is closely associated with the goal of selecting predictors and
making return prediction, which makes it an important tool for understanding the behaviour of
risk premia. Gu et al. (2019) makes a comprehensive attempt in applying and comparing many
major machine learning methods to address the return predictability issues in empirical finance and
reach the conclusion that machine learning method like Neural network and regression trees are able
to gain much predictive advantage for predicting returns in financial market. Kozak et al. (2018)
applies a Bayesian method by imposing an economically motivated prior on stochastic discount
factor (SDF) to reveal how machine learning method (specifically, the penalized regression like
LASSO method) can be connected with conventional factor model to provide a characteristics-sparse
stochastic discount factor (SDF) which is able to summarize the explanatory power of cross-sectional
stock return predictions in high-dimensional setting. Similar researches on applying machine learning
method to analyse cross-sectional return include but not restricted to (Freyberger et al., 2019;
Chinco et al., 2019; Han et al., 2019; Chen et al., 2019).
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This paper just follows the route by applying a recently rising machine learning method based on
decision tree ensembles for prediction and variable selection for high dimensional dataset. It has been
documented in literature that BART usually has good performance in practice and Linero (2018)
extends the pioneering work on Bayesian additive regression trees (BART) model by constructing
prior on decision tree ensembles with the a sparsity-inducing Dirichlet hyper-prior for addressing
variable selection issue. This newly introduced sparsity-inducing Dirichlet prior in Linero (2018)
makes BART more suitable for selecting variables and is less likely to overfit. Recently, there
is also ongoing work to theoretically justify BART (Ročková and van der Pas, 2019; Ročková,
2019; Ročková and Saha, 2019), which makes it a promising future that BART is theoretically
grounded . Therefore, given the nice performance and properties of BART documented in statistical
literature, it is meaningful to make an attempt to apply BART to a large set of documented
firm-level characteristics to identify potentially useful variables for the expected return, especially for
addressing the conventional concern about improving out-of-sample prediction accuracy as well as
the current increasing concern of dimension reduction of covariates and selecting the most influential
variables for general functional form of expected return.

The rest of this paper is structured as follows: Section 2 discusses the general background of
estimating expected return and one recent proposed method in literature, which is essentially a
combination of sieve-based nonparametric algorithm with the adaptive group LASSO method. Main
procedure about the implementation of this proposed method and limitation of this method is
discussed in this section. Section 3 describes and discusses the general implementing procedure of
BART. Monte Carlo study is discussed in Section 4 for demonstrating the potential ability of BART
in selecting influential variables in complex model settings and nice performance of BART in terms of
making out-of-sample prediction in comparison to some existing methods as well. Section 5 applies
BART to real financial data to select influential firm-level characteristics for the expected return.
Out-of-sample prediction performance of BART based on out-of-sample R square is discussed as
well. Section 6 concludes.

2 Expected Return and Current Methods

2.1 Expected return

One major concern in empirical asset-pricing literature is to identify the firm-level characteristics of
period t− 1 which are useful for predicting returns of period t. Generically, it is collected in the
following functional form of conditional mean

mt (c1, . . . , cS) = E [Rit | C1,it−1 = c1, . . . , CS,it−1 = cS ] (1)

where C1,it−1, . . . , CS,it−1 are the S characteristics of firm i in period t− 1.
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2.2 Current methods

The generic problem described in (1) can be approximated and estimated nonparametrically.
However, if the number of available characteristics is large (which is common in finance research
given that the long-time development in cross-sectional asset-pricing literature and that many
potential firm-level characteristics has been proposed). How to dissect the functional form of
expected return and meanwhile select the characteristics potentially useful for prediction is nascent
in recent empirical finance literature. Freyberger et al. (2019) proposed a semiparametric method
with LASSO method plugged in for variable selection as following

mt (c1, . . . , cS) =
S∑
s=1

mts (cs) (2)

with each mts (cs) modelled nonparametrically by approximating it using some basis functions.
Specifically, Freyberger et al. (2019) apply spline function as basis functions and their method is
mainly based on the following steps.

Step 1: Doing the following optimization

β̃t = arg min
bsk:s=1,··· ,S;
k=1,··· ,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk
(
C̃s,it−1

))2

+ λ1

S∑
s=1

(
L+2∑
k=1

b2
sk

) 1
2

(3)

where β̃t is a (L+ 2)×S matrix and λ1 is the associated penalty parameter in LASSO. Where pk(c)
is selected from the class of quadratic spline function such that

p1(c) = 1, p2(c) = c , p3(c) = c2, and pk(c) = max{c− tk−3, 0}2, for k = 4, · · · , L+ 2.

and
0 = t0 < t1 < · · · < tL−1 < tL = 1

is an increasing numbers between [0, 1] similar to portfolios breakpoints. λ is selected in a data-
dependent way to minimize Bayesian Information Criterion (BIC), which is suggested by Yuan and
Lin (2006).

Step 2: Doing the second optimization and first define

wts =


(∑L+2

k=1 β̃
2
sk

)− 1
2 if

∑L+2
k=1 β̃

2
sk 6= 0

∞ if
∑L+2
k=1 β̃

2
sk = 0
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then solve

β̌t = arg min
bsk:s=1,··· ,S;
k=1,··· ,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk
(
C̃s,it−1

))2

+ λ2

S∑
s=1

(
wts

L+2∑
k=1

b2
sk

) 1
2

(4)

Note that λ2 is selected as to minimize BIC and β̌t is (L+ 2)× S matrix as well.

Step 3: Denote β̂ts as the s column selected from β̌t, and β̂tsk as the k’ th element of this column,
then the estimation for mts(·) is

̂̃mts(c̃) =
L+2∑
k=1

β̂tskpk(c̃) (5)

�

Difficulties and potential problems as well for this framework is mainly due to the required
optimization in Step 1 and Step 2 since essentially it is needed to do optimization over a large
dimensional space; Moreover, the cross-validation to be used for selecting the associated penalty
parameter λ1 and λ2 also makes this algorithm computationally heavier. Another shortcoming of
this framework is the partial linear setting implying implicit exclusion of cross dependencies since

∂2mt (c1, . . . , cS)
∂cs∂cs′

= 0 ∀s 6= s′.

This issue has to be solved by adding certain intersections as additional regressors. Therefore,
a more flexible and general nonparametric setting is desired for the purpose of selecting useful
predictors and making predictions by taking the underlying data nonlienarity into account under
the general functional form specification. To see the why it is necessary to take nonlinearity and
intersection between characteristics into account, we may briefly discuss here based on Fama and
French (2015) where they set up the connections of the following four terms,

M

B
: market to book ratio

E [Y ] : firm’s expected earnings

∆B : investment

r : discount rates (return in general as well)

as jointly summarized as
Mt

Bt
= 1
Bt

∞∑
τ=1

E (Yt+τ −∆Bt+τ )
(1 + r)τ . (6)

This connection as demonstrated in (6) actually leads to the following implications by holding
everything else unchanged
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(i) A lower value of Mt, or equivalently high book-to-market ratio, Bt
Mt

, implies a higher expected
return, corresponding to r.

(ii) Higher expected future earnings imply a high expected return.

(iii) Higher expected growth in book equity (investment) implies a lower expected return.

These implications directly imply that characteristics like book-to-market ratio, firm’s expected
earnings, and investment must predict future equity returns; but the unknown functional form of
E [·] and the dependence of discount rates on these characteristics lead to highly nonlinear form
in general and that different characteristics of firms are interacted with each other. Thus the
non-linearities and interactions between characteristics are necessarily to be taken into consideration.
This is also the motivation of this project to turn to focus on nascent BART algorithm, which is
naturally of nonparametric form and generally does not implicitly exclude the intersections between
covariates, given the excellent performance of BART in practice.

3 Bayesian Additive Regression Tree

3.1 General additive tree model

Bayesian Additive Regression Tree (BART) as a kind of general nonparametric statistical model
setting is based on the early work of ensembles of decision trees and regression trees including
Breiman (1991) and Breiman (2001). It could be treated within nonparametric statistical modelling
framework since essentially the generic idea of regression tree is by employing a lot of step functions to
approximate unknown functional forms. Corresponding discussion about implementation algorithm
under Bayesian framework can be traced back to the pioneering work as Chipman et al. (1998);
Denison et al. (1998); Chipman et al. (2010). The general idea is to approximate the functional
form of interest f0(x) using the following random sum of decision trees f(x)

f(x) =
T∑
t=1
Tt(x), x ∈ RP

and for a specific observation y, it is assumed that

y = f(x) + ε, ε ∼ σ · N (0, 1). 1

Each regression tree Tt(x) is constructed from a series of binary trees, the structure of which is
mainly determined by splitting rules (cutoff values) collected in a vector ct and the associated
terminal nodes collected in a vectorMt such that Tt(x) = µtl if x is associated with terminal node
l of tree t. 2 To illustrate this idea clearly, the following figure is used to demonstrate the basic

1 |f0(x)− f(x)| is better to be treated as the approximation error while ε captures the randomness of sampling
error in general.

2 cutoff values ctj are drawn uniformly from the collection of observed x1j , . . . , xnj given the j-th covariate is
selected.
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structure of a single binary tree.

[Place Figure 1 about here]

Suppose that x is of 2 dimension (x1 and x2) and a single binary tree g(·) is in 2 depth. Splitting
rule is selected as c = (c1, c2)>, where in this example c1 = 0.5 and c2 = 0.3. Given this structure,
the 2 covariates are dissected into 3 categories and tree g(·) just take 3 constant values on the 3
different areas. By viewing this problem from the nonparametric perspective, it is an approximation
of unknown functional form using a series of step functions in general. And it is also straightforward
to see the connection between the underlying partition logic of BART with that of portfolio sorting
common in finance. Where for this simple example by replacing x1 with “size” and x2 with “value”
measure respectively, it is simply a sorting with three categories.

Remark 3.1 Here we may slightly interchange the notation to follow convention in statistical
literatures corresponding to BART. f0(x) plays the same role as the analogue of the general
functional form of expected return expressed in (1). And x replace the vector of characteristics of
firms. Thus x here is equivalent to the cross-sectionally observed firm-level characteristics c1, . . . , cS

as in (1). Temporarily in this section for describing BART algorithm, vector c denotes the splitting
rules.

3.2 Complete model with regularization prior

Under Bayesian framework, let θ = (σ, T ,M) collect all the parameters in tree model where T
denotes all the tree structure andM denotes all the parameters collected from all the trees used.
Specifically,

T = {T1, . . . , TT } M = {M1, . . . ,MT }

with
Mt = {µt1, . . . , µtl, . . . , µtbt}

and bt denotes number of terminal nodes used in tree Tt(x). Regularization prior for a specific tree
model is then written as

π(θ) = π ((T1,M1), (T2,M2, . . . , (TT ,MT )), σ)

= π(σ)
T∏
t=1

π (Tt)π (Mt | Tt) . (7)

3.2.1 Prior for Tt

Each tree Tt(x) is generated from a sequence of binary tree by imposing the prior for tree structure
as following

q(d) : N→ [0, 1].
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where d denotes the tree depth ranging from d = 0, · · · ,∞. Specifically, each tree is constructed
starting from a single node at depth d = 0 and the two child nodes of depth d+ 1 oriented from
the node of depth d is generated with probability q(d) or the node of depth d is terminal otherwise.
This process iterates onwards for d = 1, · · · ,∞. A common choice for q(d) (Chipman et al., 1998;
2010) is

q(d) = γ

(1 + d)β γ ∈ (0, 1), β ∈ [0,∞) (8)

Example 3.1 (Single Tree Structure) This is an example used to demonstrate how a single
tree is specified based on probability rule as in (8) with γ = .95 and β = 2. If d = 0 and simply
there is one terminal node, it is by specification with probability 1 − .95 = .05; If d = 1 and the
tree is terminated at d = 1, then by specification it is with probability .95× (1− .95/22)2 = .55;
If d = 2 and the tree is terminated at d = 2, the number of terminal nodes could be either 3 or 4
corresponding to the two cases illustrated below

[Place Figure 2 about here]

If tree is with 3 terminal nodes as in (a), the probability for this structure is .95×
(
1− .95/22)×

.95
22 ×

(
1− .95

32

)2
× 2 = 0.28; or the tree with 4 terminal nodes: The probability assigned for the tree

structures listed in (b)-(e) is .95×
(
1− .95/22)× (.95/22)× (0.95/32)×

(
1− .95/42)2×4 = .06; The

probability assigned for tree structure listed in (f) is .95×
(
.95/22)2×(1− .95/32)4 = .03. Hence, the

probability for tree with four terminal nodes is 0.06 + 0.03 = 0.09. Everything else remained is tree
structure with more than 5 terminal nodes and it is with probability 1− .05− .55− .28− .09 = .03.

Once the tree depth is determined by q(d), the predictors as a subset of x are chosen according
to the probability vector ω = (ω1, . . . , ωP ). Dirichlet distribution is adopted such that

ω ∼ D(α/P, . . . , α/P )3 (9)

and
α

α+ ρ
∼ Beta(a, b).4

All these prior information about depth of each tree and covariates used for splitting each tree
together determine the prior π (Tt).

3 Figure 3 demonstrates how the α plays the role in determining the weights contributed by different variables
and how different α specifications may lead to sparsity for shrinkage and variable selection purpose. This is consistent
witht practical decsion making of investors since if all the all the investors in market are Bayesian, homogeneous,
risk-neutral and hence a shrinkage interpretation reflects informative prior structure such that the model parameters
cannot have arbitraryily (this is also due to the economic plausibiliy considerations) and their posterior beliefs are
shrunk towards zero.

4 a,b,ρ here are hyperparameters. By default, ρ is possible to be selected as ρ = P but ρ is possible to be less than
P if theres is a strong priori support that predictors used are sparse.
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3.2.2 Prior for Mt | Tt

For each tree Tt(x) and given x, Tt(x) takes one value from {µt1, . . . , µtl, . . . , µtbt}, denoted by µt.
For a given θ,

f(x | θ) = µ1 + µ2 + · · ·+ µT .

Assuming µt ∼ N (0, τ2) i.i.d. then

f(x | θ) ∼ N
(
0, T · τ2

)
.

Then Jeffreys prior is adopted such that

τ ∝ 1√
T
.5

3.2.3 Prior for σ

σ2 ∼ νλ

χ2
ν

(10)

This prior specification is usually for the conjugacy consideration which would bring much convenience
for implementation. 6 For practical implementation, ν is selected and λ is chosen in this way:

Step 1 Roughly estimate σ, denoted by σ̂

σ̂ =


standard deviation of residual from OLS if p < n

standard deviation of y if p ≥ n

Step 2 Choose λ so that σ̂ is at a chosen quantile q of σ2 ∼ νλ
χ2
ν
(by default, q = .9).

3.3 Sampling procedure

As usual, a sequence of Metropolis-Hastings within Gibbs sampler is adopted:

Step 1 Tt,Mt | T−t,M−t, σ2,y, for t = 1, . . . , T , which is done compositionally as

(a) Tt | T−t,M−t, σ2,y,

(b) Mt | T ,M−t, σ2,y,

Step 2 σ2 | T ,M,y.

5 Jeffreys prior is even approved somehow from Objective Bayesian perspective given that it approximately takes
the functional form of reference prior, which maximizes the expected information from data over the permissible prior
space. (see Clarke, 1994; Berger et al., 2009; Chen, 2019)

6 As pointed in (Chipman et al., 1998, p. 939), this prior specification is equivalent to the usual Inverse Gamma
specification such that σ2 ∼ IG (ν/2, νλ/2).
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One thing to remark here is that the Dirichlet prior specification as mentioned previously gives a
conjugate Gibbs-sampling update for ω

ω ∼ D
(
α

P
+m1, . . . ,

α

P
+mP

)
(11)

where mj is number of times when j-th covariate is used for splitting trees. Finally it is possible to
obtain an average of posterior probability for each covariate and this can be used as a measure of
variable importance for the purpose of variable selection.

4 Monte Carlo Study

Let’s consider a relatively highly nonlinear model where f(x) is specified as

f(x) = sin
(
x2

1 + x2
2

)
+ sin

(
x2

3 + x2
4

)
+
(
x1 + x2

2
)
· (x14 + x15)2

3 + x3 + x2
14

(12)

Data is generated from f(x) such that for each observation yi and covariates xi,

yi = f(xi) + εi εi ∼ N
(
0, σ2

)
where xi is 1× P row vector generated uniformly on [−2, 2] and σ is taken as the sample standard
error of f(xi). 7 Applying the simulated observations {yi,xi}ni=1 to BART, variable selection is based
on the finally updated probability ω assigned to each variable. The following figure demonstrate the
finally updated probability for each variable under different n, p specifications.

[Place Figure 4 about here]

It is obvious from Figure 4 that potentially influential variables x1, x2, x3, x4, x14 and x15 as
designed is possible to be identified based on the finally updated posterior probability from BART.
However, as the number of variables is relatively large in comparison to the sample size (say, where
P = 100 and n = 500 or even P = 50 and n = 500), some of the not influential variables may be
confounded with the indeed influential ones. But with the increase of sample size, such confounding
variables are possible to be excluded based on the updated posterior probability.

To demonstrate the out of sample prediction accuracy from BART in comparison to conventional
methods like OLS, As inspired by the suggestions in Campbell and Thompson (2007) and Rapach
et al. (2010), the out-of-sample evaluation (forecast evaluation) is via out-of-sample R square defined
as

R2
OS = 1−

∑
i∈O(yi − ŷi)2∑

i∈O y
2
i

7 Data simulated here is not in panel setting since we want to emphasize the return predictability from cross-
sectional information. This is consistent with our empirical implementation where we train the the mode within a
given window for each cross-sectional data by fixing time index and take the final prediction as the time-series average
of predictions made from cross-sectional prediction.
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where O collects all the indexes for observations and corresponding prediction out of training sample.
The results are listed as following

[Place Table 2 about here]

For relatively more fair comparison, I also constructed a forward neural network with three
layers and applied it to the the simulation mechanism. I just found that even in comparison to this
machine learning method which is popular in industry, the out-of-sample performance is still better
especially for the scenario where the sample size is sufficiently large and the number of covariates is
relatively large as well. The implementation is through TensorFlow and the result is left in appendix
Table A.1. One additional finding is that the size of nodes in each layer should not be that large
and the total training epochs for forward neural network should not be that large as well (about 64
nodes in each layer and training for 10 epochs should be enough in our simulation).

5 Empirical Application Results

5.1 Data construction

As in Green et al. (2017), total 102 firm-level characteristics are constructed, requiring that each
characteristic be entirely calculable from CRSP, Compustat and/or I/B/E/S data. Data covers
39-year period from January 1980 to December 2018. As the argument in Green et al. (2017), the
reason that the whole data sample starts from 1980 is because most firm-level characteristics only
become robustly available in that year. The total 102 characteristics used are listed in the following
table

[Place Table 3 about here]

Specifically, we do a normalization from the original firm-level characteristic Cs,it−1 to C̃s,it−1

such that C̃s,it−1 is supported over [0, 1] by taking

C̃1,it−1 = Fs,t (Cs,it−1) = rank (Cs,it−1)
Nt + 1

with
rank

(
min

i=1...,Nt
Cs,it−1

)
= 1 rank

(
max
i=1...Nt

Cs,it−1

)
= Nt

where Nt denotes the number of available firms such that to keep the data as balanced sheet in
period t.
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5.2 Out-of-sample prediction comparison

As discussed in the previous discussion, R2
OS here is defined as following

R2
OS = 1−

∑
(i,t)∈C(ri,t+1 − r̂i,t+1)2∑

(i,t)∈C r
2
i,t+1

where ri,t+1 denotes return for i-th stock in period t + 1. (i, t) ∈ C indicates that forecasting
evaluation is made on testing sub-sample. If we select 1980 to 2005 as the training sample and
make (2005− 1980 + 1)× 12 = 312 cross-sectional predictions for each month from January 2006 to
December 2018 and take the time series sample average as the prediction, the R2

OS from BART
is −0.0051. In rolling window scheme, currently it is implemented from 2013 to 2016 and for
prediction made at each month within this time period, time-series average of previous 120 (10
years) months predictions (based on cross-sectional data) are used for prediction. And currently the
R2
OS is 0.0106. 8 This is pretty good in comparison to some existing methods. Specifically, for OLS

without intercept, the R2
OS is 0.0019. Actually, by simply calculating that

0.0106/0.0019 ≈ 5.58

which implies that it is almost 6 times improvement in R2
OS . Predicted returns versus Realized

returns are possible to be compared as following, despite that the improvement is not that obvious
directly from this scatter plot.

[Place Figure 5 about here]

Actually based on the implementation experience, some proposed nonparametric methods with
LASSO plugged in is somehow computationally demanding since two large-scale optimization
problems have to be solved. This may justify the application of BART from the perspective of
computational efficiency as well.

Remark 5.1 I also compared the results from rolling window. Basically, for each month from 2013
to 2018, I trained BART in the previous 10 years, which means that the time-series average of 120
predictions are used as r̂i,t+1 for (i, t) ∈ C. Two detailed comparisons about how to select training
sample are made as well:

(i) exactly the data from previous 10 years are used for training BART. For example, if t, where
the time point the prediction is made, refers to May in 2013, the training sample in this case
is from January 2003 to December 2012.

(ii) exactly the data from previous 120 months are used for training BART. For example, if t,
where the time point the prediction is made, refers to May in 2013, the training sample in
this case is from May 2003 to April 2013.

8 The reason that the results are based on testing sample from 2013 to 2016 is simply for the purpose of saving
time. Basically, it is supposed to make the testing sample have longer time coverage, say, from 2010 to 2018. It could
be done, just take more time on calculation, one more week needed.
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For (i), the corresponding R2
OS is 0.0115; and the for (ii), it is exactly what discussed in the main

context, thus, R2
OS = 0.0106.

Remark 5.2 For robustness check, I have calculated and compared the out-of sample R squares,
both for BART and conventional OLS, with different specifications for testing period and testing
sample length iin between 2013 and 2018 as well. The basic results are listed in appendix Table A.3.
And one major conclusion made from this comparison is that the U.S. market is less predictable
recently after 2015.

Moreover, we can construct equally weighted portfolios based on the predicted return of BART and
hold each portfolio to see the future cumulative return as following

[Place Figure 6 about here]

Similarly, we can construct equally weighted portfolios based on the predicted return of NN3
and hold each portfolio to see the future cumulative return as following

[Place Figure 7 about here]

For comparison purpose, I also construct the equally weighted portfolios based on the predicted
return of OLS and hold each portfolio to see the future cumulative return as following

[Place Figure 8 about here]

Where specifically for all the cases demonstrated above, I construct 5 equally weighted portfolios
based on the out-of-sample predictions generated from different methods. That is, the ordering of
cumulative return of constructed portfolios is expected as following

Decile 5 > Decile 4 > Decile 3 > Decile 2 > Decile 1.

One thing to note by comparing the above results is that in the relatively short period (specifically
here the testing sample is specified as from 2013 to 2016, 48 months), the future cumulative
return performance of portfolios constructed from machine learning method (BART and NN3)
is relatively more distinguishable in comparison to the future cumulative return performance of
portfolios constructed from linear model (OLS): linear model in this sense performs the worst
in this specified short testing sample, given the observation that the associated portfolio which
would be expected to generate the best cumulative return (Decile 5) some times does not yield
the best cumulative return as expected; While the Decile 5 portfolio associated with BART and
NN3 always leads to the best cumulative return in this short testing sample. But there is still some
“confusion” for machine learning method where the portfolios in between the “best” (Decile 5) and
the “worst” (Decile 1) may interchange their expected ordering of cumulative return: for BART,
Decile 3 portfolio yields the second to the best cumulative return (Decile 3 > Decile 4 > Decile 2);
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while for NN3, Decile 2 portfolio finally yields better cumulative return than Decile 3 portfolio
(Decile 4 > Decile 2 > Decile 3).

The longest comparison is from 2008 to 2018 and the corresponding out-of-sample R square
R2
OS are as following respectively

BART : 0.028 (%)

NN3 (Python TensorFlow) : -0.18 (%)

NN3 (MATLAB) : -0.24 (%)

NN3 (R Keras TensorFlow API) : 0.03 (%)

OLS : -0.34 (%)

Given the results demonstrated above, it seems that Neural Network based method is still the
most advanced machine learning methods in terms of prediction accuracy but it has to be tuned a
lot and the result may vary a lot over different platform. Moreover, in terms of out-of-sample R
square, the gain from applying NN3 in comparison to BART is not that much (0.028% of BART
versus 0.03% of NN3), hence the out-of-sample R square is not that bad in this sense. And one
more point to be noted is that the prediction results generated from BART are relatively more
stable and is not that much sensitive to the platforms on which it has been implemented. Finally,
the discussed ordering “confusion” vanishes as the testing sample is extended as from 2008 to 2018
(132 months), see Figure A.2 to Figure A.4 for detailed demonstration.

5.3 Characteristics selected

We firstly plot heat map constructed from finally updated posterior probability in each period as
following

[Place Figure 9 about here]

To select the overall influential characteristics, we simply implement the following steps

Step 1 For each time period, define a benchmark probability assigned to each used characteristic
in that period as

Prbenchmark
t = 1

# cross-sectional characteristics used in t .

Step 2 Denote the posterior updated probability assigned to each characteristic as Prt (i.e., the
finally updated posterior probability from BART, ω), comparing Prt with Prbenchmark

t and
picking the corresponding characteristics such that Prt > Prbenchmark

t .
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Step 3 For each characteristic, counting the number of times it has been selected in the time span
based on the criteria in Step 2. Denote the length of whole time period span as T and
finally select the characteristics with the number of being selected greater then 2T/3. 9

Given the above described three steps, the selected influential characteristics for prediction and
estimating expected return is “mve”, “mom12m”, “mom1m”, “retvol”, “baspread” and “idiovol”,
which is based on the data from 1980 to 2005. It could be explained as the three sources of
characteristics about firms: Size (“mve”), Momentum (“mom12m” and “mom1m”) and Volatility
(“retvol”, “baspred” and “idiovol”). Similar result holds for the time period from 2006 to 2018
where we find that Size (“mve”), Momentum (“mom12m”) and Volatility (“baspread”) are the most
influential characteristics for expected return.

5.4 More Comprehensive Results from Other Markets

Previous discussed empirical studies follow the convention in literature by focusing on the U.S.
financial market. In this section, I will make one step forward progress by extending the application
of machine learning method to other markets: the China stock market and the main traded
financial assets around the the world. The main concern of the following to be discussed is how
the specific machine learning method, BART, which has been discussed and proposed to use in
this paper, performs in Chins stock market and the markets. Comparison is made between the
bottom benchmark (i.e. linear model like OLS) and some advanced machine learning methods (i.e.
Black-box model like Neural Network as well.

5.4.1 China stock market

I collect data mainly from CSMAR (China Stock Market & Accounting Research Database) and con-
struct data as following (for complete construction details, see my SAS codes: constructing_csmar_data.sas)

• Market value at monthly frequency is collected directly from csmar.csmar_t_mnth with the
corresponding acronym as msmvttl. And it is renamed as mve.

• Equity data is collected from csmar.combas with the corresponding acronym as A003000000.
Different companies may report data corresponding to equity at different timing point and
the values may vary for data reported at different period. To follow the convention in finance
research, I keep the data reported in June as the annual fiscal equity data. In the SAS code,
this variable is renamed as tseq. tseq is used as the proxy for book value and hence I make
an attempt to construct book-to-market ratio (with acronym bm) as bm = tseq/mve.

• Return data is directly collected from csmar_t_mnth. I use Mretwd (Monthly Return with
Cash Dividend Reinvested) as the proxy for monthly return. And with the available monthly
return data, I can further construct firm-level characteristics corresponding to momentum.
Mretwd is renamed as ret.

9 The rule for splitting data is the similar to what implemented in (Kozak et al., 2018; Kozak, 2019).
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• Moreover, I also make an attempt to construct two additional characteristics associated with
daily return through CSMAR daily database. Specifically, maxret refers to the maximum of
daily return within a specific month; retvol refers to the volatility (standard deviation) of
daily return. Following code chunk extracted is for demonstration purpose:

With the description above, I summarize the characteristics used for discussion for China stock
market as following

mom1m : Lagged monthly return

mom12m : 12-month momentum

mom6m : 6-month momentum

chmom : Change of 6-month momentum

maxret : Maximum daily return

retvol : Return volatility (standard deviation) of daily return

log_mve : Log market value

bm : Book to market

I follow the same forward rolling-window scheme training and testing as in the previous discussion.
To document which covariate matters for return prediction, I implement the following procedure

Step 1 For each time period, define a benchmark probability assigned to each used characteristic
in that period as

Prbenchmark
t = 1

# cross-sectional characteristics used in t .

Step 2 Denote the posterior updated probability assigned to each characteristic as Prt (i.e., the
finally updated posterior probability from BART, ω), comparing Prt with Prbenchmark

t and
picking the corresponding characteristics such that Prt > Prbenchmark

t .

Step 3 Documenting the results for each time point within training period and counting how many
times a specific variable has been selected within training period (120 months prior to each
time point in the testing sample) based on Step 1 and Step 2. And later by rolling the
testing time point forward we can document the time-varying properties corresponding to
which covariates matter and plots the associated heat map as following

[Place Figure 10 about here]

As demonstrated in the figure above, log_mve, retvol, bm and mom1m in general relatively matter
more for return prediction in China stock market.
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For out-of-sample prediction accuracy comparison, it is still firstly based on out-of-sample R
square. The documented out-of-sample R square with testing sample from 2008 to 2018 is as
following

BART : 0.1937%

NN3 : 0.4661%

OLS : −0.0519%

Despite it seems that BART cannot in general beats NN3 in China stock market in terms of
prediction accuracy, the gains from constructed portfolios based on one-month ahead prediction is
not much different, which is demonstrated in the following plot of cumulative log return.

[Place Figure 11 about here]

[Place Figure 12 about here]

Where Figure 11 refers to the corresponding results from BART; while Figure 12 refers to the
corresponding results from NN3. By comparing the last row of the associated tables, the entries of
which refer to the out-of-sample Sharpe ratio of different portfolios based on the one-month ahead
predictions, there is no much difference between the Sharpe ratio of portfolios constructed from
BART and the portfolios constructed from NN3. However, the predictions from OLS, which as a
kind linear model is the bottom benchmark for comparison, are not that good by comparing the
out-of-sample R square with the out-of-sample R square of other two machine learning methods.
This is further supported through the plot of cumulative log return and Sharpe ratios of portfolios
constructed from OLS predictions.

[Place Figure 13 about here]

Where from Figure 13, the constructed portfolios are not distinguished well with each other and
the best portfolio suggested by linear model cannot lead to best cumulative return in China stock
market.

5.4.2 Around the world

In comparison to the construction of the U.S. data, the main difficulty in constructing the Global
data is from the rare data availability corresponding to prices and return at monthly frequency.
Construction of many firm-level characteristics is based on price data return data. (for example,
momentum and market value). To solve this problem, I simply construct the necessarily needed data
at lower frequency (monthly or annually) by aggregating the daily information, which is available
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at compd.g_secd on WRDS with the variable name for daily price as prccd. The major variables
collected at annually (or quarterly frequency with the similar procedure) is

prc_yr : mean(prccd) as prc_yr

I leave the detailed description in SAS code chunk in appendix. The basic cross-sectional data
structure is as following:

date : data date

year : year of data date

month : month of data date

fyear : fiscal year in which annually firm-level characteristics are issued

gvkey : global company key

loc : country code-headquarters

sic2 : the first two digits of standard industry classification code

ret : monthly return

· · · : all the remained columns correspond to

firm-level characteristics matched to monthly frequency.

The documented out-of-sample R square is as following

BART : 38.3612%

NN3 : 31.0721%

OLS : 12.7569%

which is much higher in comparison to the results from the U.S. stock market and China stock
market. Moreover, the performance of linear model is not bad as well given the relatively high
documented out-of-sample R square demonstrated above. The portfolios performance is listed and
demonstrated as following

[Place Figure 14 about here]

[Place Figure 15 about here]

6 Conclusion

This paper demonstrates how to apply nonparametric methods to study return predictability in
empirical finance with specific focus on the application of the nascent Bayesian nonparametric
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machine learning methods (BART) for variable selection and estimating expected return function in
financial market. It has been discussed and approved through simulation in this paper that BART
is efficient for selecting influential variables in comparison to some conventional methods, especially
for the scenario where the model specification is highly nonlinear. BART is applied in this paper
to select potentially influential firm-level characteristics among the major documented firm-level
characteristics in literature. Based on BART, we have documented that “Size” plus momentum
and volatility related characteristics contributes the most to the expected return. Prediction is
further made based on the selected firm-level characteristics and the functional form of expected
return function as the output from BART. The out-of-sample performance (measured in R2

OS) is
satisfactory as well in comparison to some conventional methods. (Both from simulation or empirical
implementation).

Comparison is made between bottom linear benchmark model and advanced “Black-box” machine
learning methods (specifically, Neural Network) but with documented good performance in prediction
accuracy. Based on the results documented in this paper, prediction performance of the nascent
nonparametric machine learning method BART may vary across different universe (markets): For
the U.S. market, BART slight beats linear model but still cannot beats NN3 and cannot generate
significantly high out-of-sample R square. But for China stock market, the gain of applying machine
learning method appears and NN3 beats BART in terms of out-of-sample prediction accuracy
despite the performance of portfolio based on the corresponding predictions are not significantly
different with each other.

Despite the nascent machine learning method BART in some scenario cannot always dominate
other existing methods, its essential structure makes it a relatively more interpretable machine
learning method since all the variable importance determined by BART is based on prior-posterior
updating and hence is relatively more interpretable.
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Figures and Tables

Figure 1: Binary Regression Tree Illustration
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Note: This figure presents the diagrams of a single binary regression of 2 depth with two covariates . (a) demonstrates
how it is split and (b) demonstrates its equivalent representation in the space of two covariates (x1 and x2). Based on
the 3 categories dissected, a single tree just take some constant value on these areas respectively.
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Figure 2: Tree at Different Depth with Different Terminal Nodes

(a) 3 terminal nodes

(b) 4 terminal nodes (c) 4 terminal nodes (d) 4 terminal nodes (e) 4 terminal nodes

(f) 4 terminal nodes

Table 1: Probability for Tree Structures with Different Terminal Nodes

Depth d Number of terminal nodes Probability
0 1 .05
1 2 .55

2
3 .28
4 .09

> 3 > 5 .03
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Figure 3: Illustration of Dirichlet Distribution

Note: The above graph plots the probability density function for Dirichlet distribution D (α/3, α/3, α/3) with different
α specifications. High α implies that more density concentrate on the interior points over the probability simplex
while relatively low α gets the probability density function flat. If α is evaluated such that α/3 < 1, sparsity would be
induced (more density would concentrate on the vertices and edges of the probability simplex, vertices of the simplex
correspond to that a single variable is selected with prior probability equal to 1, edges correspond to that two variables
are selected with additional variable excluded with prior probability equal to 1.)
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Figure 4: Finally Updated Posterior Probability of Variables
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Note: The above figure demonstrates the scatter plot of finally updated posterior probability against all the ordered
number of variable index as described in the simulation example. Vertical scale corresponds to the the finally updated
posterior probability and the horizontal scale corresponds to the ordered variable index. In this 3× 3 grid panel, each
row corresponds to the same n (sample size) specification but with different P (number of variables) and each column
corresponds to the same P (number of variables) specification but with different n. n takes value of 500, 5000 and
50000 respectively and P takes value of 20, 50 and 100 respectively.
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Table 2: Out of Sample Prediction Comparison

BART OLS Nonparametric-LASSO
n p nt R2

OS n p nt R2
OS n p nt R2

OS

500 20 100 -0.0178 500 20 100 -0.0285 500 20 100 0.0431
500 50 100 0.3354 500 50 100 0.2722 500 50 100 -0.2750
500 100 100 0.4598 500 100 100 0.1928 500 100 100 -7.6196
5000 20 1000 0.4834 5000 20 1000 0.2428 5000 20 1000 0.3030
5000 50 1000 0.4607 5000 50 1000 0.2044 5000 50 1000 0.2810
5000 100 1000 0.4912 5000 100 1000 0.1989 5000 100 1000 0.2438
50000 20 10000 0.5469 50000 20 10000 0.2241 50000 20 10000 0.3239
50000 50 10000 0.5463 50000 50 10000 0.2247 50000 50 10000 0.2968
50000 100 10000 0.5542 50000 100 10000 0.2177 50000 100 10000 0.3032

Note: This table demonstrates the out-of-sample prediction comparison between BART, conventional OLS and
the proposed Nonparametric-LASSO method in (Freyberger et al., 2019). For each column, n denotes the training
sample size (number of observations); p denotes the number of covariates; nt denotes the testing sample size used for
calculating R2

OS ; R2
OS denotes the out-of-sample prediction accuracy measure discussed in the context.
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Figure 5: Realized Returns vs Predicted Returns
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Figure 6: Cumulative Returns (in log transformation) of Equally-weighted Portfolios based on
BART Prediction in the U.S. Stock Market from 2013 to 2016
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count 48.000000 48.000000 48.000000 48.000000 48.000000
mean 0.004748 0.010398 0.013756 0.012594 0.015009
std 0.047845 0.039650 0.039412 0.040591 0.047356
min -0.099099 -0.076256 -0.069921 -0.071750 -0.092969
25% -0.023956 -0.011216 -0.011156 -0.010600 -0.017195
50% 0.005861 0.008741 0.014855 0.010184 0.016574
75% 0.042555 0.041043 0.041235 0.047664 0.047009
max 0.108491 0.086766 0.087976 0.088855 0.097486
Sharpe Ratio 0.099243 0.262243 0.349023 0.310266 0.316938
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Figure 7: Cumulative Returns (in log transformation) of Equally-weighted Portfolios based on
NN3 Prediction in the U.S. Stock Market from 2013 to 2016
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Figure 8: Cumulative Returns (in log transformation) of Equally-weighted Portfolios based on
OLS Prediction in the U.S. Stock Market from 2013 to 2016
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Figure 9: Characteristic Probability
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Note: This figure plots the posterior updated probability assigned to each characteristic (vertical scale) in each time
period (horizontal scale). (a) refers to the time span from year 1980 to year 2005 and (b) refers to the time span
from year 2006 to year 2018. Different lightness of Blue indicates different values of corresponding probabilities. The
color gradient ranges from light white to blue and the darker (in blue color) the corresponding area is, the larger the
associated probability is.
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Figure 10: Characteristics Heat Map for China Stock Market
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Figure 11: Cumulative Returns (in log transformation) of Equally-weighted portfolios based on
BART prediction in China Stock Market from 2008 to 2018
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Figure 12: Cumulative Returns (in log transformation) of Equally-weighted portfolios based on
NN3 prediction in China Stock Market from 2008 to 2018
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Figure 13: Cumulative Returns (in log transformation) of Equally-weighted portfolios based on
OLS prediction in China Stock Market from 2008 to 2018
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Figure 14: Cumulative Returns (in log transformation) of Equally-weighted portfolios based on
NN3 prediction around Global Market from 2008 to 2018
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Figure 15: Cumulative Returns (in log transformation) of Equally-weighted portfolios based on
OLS prediction around Global Market from 2008 to 2018
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Table 3: Detailed descriptions of firm-level characteristics in the North American market

No. Acronym Firm characteristic Paper’s author(s) Year Journal Data Source Frequency
1 absacc Absolute accruals Bandyopadhyay, Huang & Wirjanto 2010 WP Compustat Annual
2 acc Working capital accruals Sloan 1996 TAR Compustat Annual

3 aeavol Abnormal earnings announcement volume Lerman, Livnat & Mendenhall 2007 WP Compustat Quarterly
+CRSP

4 age # years since first Compustat coverage Jiang, Lee & Zhang 2005 RAS Compustat Annual
5 agr Asset growth Cooper, Gulen & Schill 2008 JF Compustat Annual
6 baspread Bid-ask spread Ambihud & Mendelson 1989 JF CRSP Monthly
7 beta Beta Fama & MacBeth 1973 JPE CRSP Monthly
8 betasq Beta squared Fama & MacBeth 1973 JPE CRSP Monthly

9 bm Book-to-market Rosenberg, Reid & Lanstein 1985 JPM Compustat Annual
+CRSP

10 bm_ia Industry-adjusted book to market Asness, Porter & Stevens 2000 WP Compustat Annual
+CRSP

11 cash Cash holdings Palazzo 2012 JFE Compustat Quarterly
12 cashdebt Cash flow to debt Ou and Penman 1989 JAE Compustat Annual
13 cashpr Cash productivity Chandrashekar & Rao 2009 WP Compustat Annual
14 cfp Cash-flow-to-price-ratio Desai, Rajgopal & Venkatachalam 2004 TAR Compustat Annual
15 cfp_ia Industry-adjusted cash-flow-to-price ratio Asness, Porter & Stevens 2000 WP Compustat Annual
16 chatoia Industry-adjusted change in asset turnover Soliman 2008 TAR Compustat Annual
17 chcsho Change in shares outstanding Pontiff and Woodgate 2008 JF Compustat Annual
18 chempia Industry-adjusted change in employees Aeness, Porter & Stevens 1994 WP Compustat Annual
19 chfeps Changes in forecasted EPS Hawkins, Chamberlin & Daniel 1984 FAJ Compustat Monthly
20 chinv Change in inventory Thomas & Zhang 2002 JAR Compustat Annual
21 chmom Change in 6-month momentum Gettleman & Marks 2006 WP CRSP Monthly

22 chnanalyst Change in number of analysts Scherbina 2008 RF Compustat Monthly
+I/B/E/S

23 chpmia Industry-adjusted change in profit margin Soliman 2008 TAR Compustat Annual
24 chtx Change in tax expense Thomas & Zhang 2011 JAR Compustat Quarterly
25 cinvest Corporate investment Titman, Wei & Xie 2004 JFQA Compustat Quarterly
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Table 3: Detailed descriptions of firm-level characteristics in the North American market (Continued)

No. Acronym Firm characteristic Paper’s author(s) Year Journal Data Source Frequency
26 convind Convertible debt indicator Valta 2016 JFQA Compustat Annual
27 currat Current ratio Ou & Penman 1989 JAE Compustat Annual
28 depr Depreciation /PP&E Holthausen & Larcker 1992 JAE Compustat Annual
29 disp Dispersion in forecasted EPS Diether, Malloy & Scherbina 2002 JF I/B/E/S Annual
30 divi Dividend initiation Michaely, Thaler & Womack 1995 JF Compustat Annual
31 orgcap Organizational capital Eisfeldt & Papanikolaou 2013 JF Compustat Annual

32 pchcapx_ia Industry adjusted % change Abarbanel & Bushee 1998 TAR Compustat Annual
in capital expenditures

33 pchcurrat % change in current ratio Ou & Penman 1989 JAE Compustat Annual
34 pchdepr % change in depreciation Holthausen & Larcher 1992 JAE Compustat Annual
35 pchgm_pchsale % change in gross margin − % change in sales Abarbanell & Bushee 1998 TAR Compustat Annual
36 pchquick % change in quick ratio Ou & Penman 1989 JAE Compustat Annual
37 pchsale_pchinvt % change in sales − % change in inventory Abarbanell & Bushee 1998 TAR Compustat Annual
38 pchsale_pchrect % change in sales − % change in A/R Abarbanell & Bushee 1998 TAR Compustat Annual
39 pchsale_pchxsga % change in sales − % change in SG&A Abarbanell & Bushee 1998 TAR Compustat Annual
40 pchsaleinv % change in sales-to-inventory Ou & Penman 1989 JAE Compustat Annual

41 pctacc Percent accruals Hafzalla, Lundholm, 2011 TAR Compustat Annual
&Van Winke

42 pricedelay Price delay Hou & Moskowitz 2005 RFS CRSP Monthly
43 ps Financial statements score Piotroski 2000 JAR Compustat Annual
44 quick Quick ratio Ou & Penman 1989 JAE Compustat Annual
45 rd R&D increase Eberhart, Maxwell & Siddique 2004 JF Compustat Annual
46 rd_mve R&D to market capitalization Guo, Lev & Shi 2006 JBFA Compustat Annual
47 rd_sale R&D to sales Guo, Lev & Shi 2006 JBFA Compustat Annual
48 realestate Real estate holdings Tuzel 2010 RFS Compustat Annual
49 retvol Return volatility Ang, Hodrick, Xing & Zhang 2006 JF CRSP Monthly
50 roaq Return on assets Balakrishnan, Bartov & Faurel 2010 JAE Compustat Quarterly
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Table 3: Detailed descriptions of firm-level characteristics in the North American market (Continued)

No. Acronym Firm characteristic Paper’s author(s) Year Journal Data Source Frequency
51 roavol Earnings volatility Francis, LaFond, Olsson & Schipper 2004 TAR Compustat Quarterly
52 divo Dividend omission Michaely, Thaler & Womack 1995 JF Compustat Annual
53 dolvol Dollar trading volume Chordia, Subrahmanyan & Anshuman 2001 JFE CRSP Monthly
54 dy Dividend to price Litzenberger & Ramaswamy 1982 JF Compustat Annual

55 ear Earnings announcement return Kishore, Brandt, 2008 WP Compustat Quarterly
Santa-Clara & Venkatachalam +CRSP

56 egr Growth in common shareholder equity Richardson,Sloan, Soliman & Tuna 2005 JAE Compstat Annual
57 ep Earnings to price Basu 1997 JF Compustat Annual
58 fgr5yr Forecasted growth in 5-year EPS Bauman & Dowen 1988 FAJ I/B/E/S Annual
59 gma Gross profitability Norvy-Marx 2013 JFE Compustat Annual
60 grCAPX Growth in capital expenditures Anderson & Garcia-Feijoo 2006 JF Compustat Annual
61 grltnoa Growth in long-term net operating assets Fairfield, Whisenant & Yohn 2003 TAR Compustat Annual
62 herf Industry sales concentration Hou & Robinson 2006 JF Compustat Annual
63 hire Employee growth rate Bazdresch, Belo & Lin 2014 JPE Compustat Annual
64 idiovol Idiosyncratic return volatility Ali, Hwang & Trombley 2003 JFE Compustat Monthly
65 ill Illiquidity Amihud 2002 JFM CRSP Monthly
66 indmom Industry momentum Moskowitz & Grinblatt 1999 JF CRSP Monthly
67 invest Capital expenditures and inventory Chen & Zhang 2010 JF Compustat Annual
68 IPO New equity issue Loughran & Ritter 1995 JF Compustat Monthly
69 lev Leverage Bhandari 1988 JF Compustat Annual
70 lgr Growth in long-term debt Richardson, Sloan, Soliman & Tuna 2005 JAE Compustat Annual
71 maxret Maximum daily return Bali, Cakici & Whitelaw 2011 JFE CRSP Monthly
72 mom12m 12-month momentum Jegadeesh 1990 JF CRSP Monthly
73 mom1m 1-month momentum Jegadeesh & Titman 1993 JF CRSP Monthly
74 mom36m 36-month momentum Jegadeesh & Titman 1993 JF CRSP Monthly
75 mom6m 6-month momentum Jegadeesh & Titman 1993 JF CRSP Monthly

37



Table 3: Detailed descriptions of firm-level characteristics in the North American market (Continued)

No. Acronym Firm characteristic Paper’s author(s) Year Journal Data Source Frequency
76 ms Financial statement score Mohanram 2005 RAS Compustat Quarterly
77 mve Size Banz 1981 JFE CRSP Monthly
78 mve_ia Industry-adjusted size Asness, Porter & Stevens 2000 WP Compustat Annual

79 nanalyst Number of analysts covering stock Elgers, Lo & Pfeiffer 2001 TAR Compustat Monthly
+I/B/E/S

80 nincr Number of earnings increases Barth, Elliott & Finn 1999 JAR Compustat Quarterly
81 operprof Operating profitability Fama & French 2015 JFE Compustat Annual
82 roeq Return on equity Hou, Xue & Zhang 2015 RFS Compustat Quarterly
83 roic Return on invested capital Brown & Rowe 2007 WP Compustat Annual
84 rsup Revenue surprise Kama 2009 JBFA Compustat Quarterly
85 salecash Sales to cash Ou & Penman 1989 JAE Compustat Annual
86 saleinv Sales to inventory Ou & Penman 1989 JAE Compustat Annual
87 salerec Sales to receivables Ou & Penman 1989 JAE Compustat Annual
88 secured Secured debt Valta 2016 JFQA Compustat Annual
89 securedind Secured debt indicator Valta 2016 JFQA Compustat Annual

90 sfe Scaled earnings forecast Elgers, Lo & Pfeiffer 2001 TAR Compustat Monthly
+I/B/E/S

91 sgr Sales growth Lakonishok, Sheifer & Vishny 1994 JF Compustat Annual
92 sin Sin stocks Hong & Kacperczyk 2009 JFE Compustat Annual
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Table 3: Detailed descriptions of firm-level characteristics in the North American market (Continued)

No. Acronym Firm characteristic Paper’s author(s) Year Journal Data Source Frequency
93 SP Sales to price Barbee, Mukherji & Raines 1996 FAJ Compustat Annual

94 std_dolvol Volatility of liquidity Chordia, 2001 JFE CRSP Monthly
(dollar trading volume) Subrahmanyam & Anshuman

95 std_turn Volatility of liquidity Chordia, 2001 JFE CRSP Monthly
(share turnover) Subrahmanyam & Anshuman

96 stdacc Accrual volatility Bandyopadhyay, Huang & Wirjanto 2010 WP Compustat Quarterly
97 stdcf Cash flow volatility Huang 2009 JEF Compustat Quarterly

98 sue Unexpected quarterly earnings Rendelman, Jones & Latane 1982 JFE Compustat Quarterly
+CRSP

99 tang Debt capacity/firm tangibility Almeida & Campello 2007 RFS Compustat Annual
100 tb Tax income to book income Lev & Nissim 2004 TAR Compustat Annual
101 turn Share turnover Datar, Naik & Radcliffe 1998 JFM CRSP Monthly
102 zerotrade Zero trading days Liu 2006 JFE CRSP Monthly39
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Appendix

A More Demonstration Figures and Tables

Figure A.1: Additional Demonstration of Regression Tree
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Note: This figure is for additional general demonstration of how the structure of regression tree with more partitioned
areas is, where the two-dimensional covariate plane is partitioned into 5 different areas. Top Left: A partition of
two-dimensional covariate plane that could not result from recursive binary splitting. Top Right: how the two-
dimensional plane is partitioned into 5 different areas based on recursive binary splitting. Bottom Left: A tree structure
corresponding to the partition in the top right panel. Bottom Right: based on the partition rule in the bottom left
panel, how a specific step function approximation of unknown functional form is. This figure and corresponding
explanation is based on ideas from James et al. (2017), with permission from authors: G. James, D. Witten, T. Hastie
and R. Tibshirani.
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Table A.1: A Simulation Result from Network (200 nodes)

Training Sample Size Number of Covariates Testing Sample Size Out of Sample R Square

500 20 100 0.156745
500 50 100 -0.034445
500 100 100 0.025742

5000 20 1000 0.300099
5000 50 1000 0.082347
5000 100 1000 -0.060066
50000 20 10000 0.478012
50000 50 10000 0.381836
50000 100 10000 0.266237

Table A.2: A Simulation Result from Network (64 nodes)

Training Sample Size Number of Covariates Testing Sample Size Out of Sample R Square

500 20 100 0.237615
500 50 100 0.001637
500 100 100 -0.039926

5000 20 1000 0.281587
5000 50 1000 0.118396
5000 100 1000 0.030965
50000 20 10000 0.493948
50000 50 10000 0.427575
50000 100 10000 0.315529
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Table A.3: Additional Out-of-sample R2
OS(%) Comparison

Test Sample Length 4 (year)
Test Sample Window BART OLS Ratio

2013-2016 1.06 0.19 5.58
2014-2017 0.09 -0.65 -0.14
2015-2018 -0.69 -1.43 0.48

Test Sample Length 3 (year)
Test Sample Window BART OLS Ratio

2013-2015 1.18 0.16 7.35
2014-2016 -0.15 -1.11 -0.14
2015-2017 0.25 -0.4 -0.63
2016-2018 -0.60 -1.13 0.53

Test Sample Length 2 (year)
Test Sample Window BART OLS Ratio

2013-2014 2.58 1.75 1.47
2014-2015 -0.80 -2.03 0.39
2015-2016 -0.02 -0.92 0.02
2016-2017 0.89 0.60 1.48
2017-2018 -1.58 -2.11 0.75

Test Sample Length 1 (year)
Test Sample Window BART OLS Ratio

2013 4.95 4.35 1.14
2014 -0.58 -1.71 0.34
2015 -0.93 -2.24 0.42
2016 0.79 0.25 3.16
2017 1.03 1.12 0.92
2018 -3.79 -4.84 0.78

Note: This table demonstrates the empirical out-of-sample R2
OS for different test sample specifications. In the table

demonstrated above, the last column “Ratio” refers to the ratio calculated with the R2
OS of BART over the R2

OS of
OLS. For the rows where the ratios are highlighted, BART performs better than OLS for that corresponding test
sample specification indicated in the first column.
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Test Sample Length 4 (year)
Test Sample Window BART NN3 OLS Ratio

2013-2016 1.06 0.41 0.19 5.58
2014-2017 0.09 -0.57 -0.65 -0.14
2015-2018 -0.69 -1.22 -1.43 0.48

Test Sample Length 3 (year)
Test Sample Window BART NN3 OLS Ratio

2013-2015 1.18 0.59 0.16 7.35
2014-2016 -0.15 -0.76 -1.11 -0.14
2015-2017 0.25 -0.48 -0.4 -0.63
2016-2018 -0.60 -1.13 -1.13 0.53

Test Sample Length 2 (year)
Test Sample Window BART NN3 OLS Ratio

2013-2014 2.58 1.94 1.75 1.47
2014-2015 -0.80 -1.26 -2.03 0.39
2015-2016 -0.02 -0.69 -0.92 0.02
2016-2017 0.89 0.05 0.60 1.48
2017-2018 -1.58 -1.92 -2.11 0.75

Test Sample Length 1 (year)
Test Sample Window BART NN3 OLS Ratio

2013 4.95 4.14 4.35 1.14
2014 -0.58 -0.98 -1.71 0.34
2015 -0.93 -1.45 -2.24 0.42
2016 0.79 -0.006 0.25 3.16
2017 1.03 0.14 1.12 0.92
2018 -3.79 -3.66 -4.84 0.78
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Test Sample Length 4 (year)
Test Sample Window BART NN3 OLS Ratio

2013-2016 1.06 0.64 0.19 5.58
2014-2017 0.09 -0.28 -0.65 -0.14
2015-2018 -0.69 -0.91 -1.43 0.48

Test Sample Length 3 (year)
Test Sample Window BART NN3 OLS Ratio

2013-2015 1.18 0.64 0.16 7.35
2014-2016 -0.15 -0.51 -1.11 -0.14
2015-2017 0.25 -0.11 -0.4 -0.63
2016-2018 -0.60 -0.70 -1.13 0.53

Test Sample Length 2 (year)
Test Sample Window BART NN3 OLS Ratio

2013-2014 2.58 2.03 1.75 1.47
2014-2015 -0.80 -1.28 -2.03 0.39
2015-2016 -0.02 -0.36 -0.92 0.02
2016-2017 0.89 0.63 0.60 1.48
2017-2018 -1.58 -1.65 -2.11 0.75

Test Sample Length 1 (year)
Test Sample Window BART NN3 OLS Ratio

2013 4.95 4.30 4.35 1.14
2014 -0.58 -0.98 -1.71 0.34
2015 -0.93 -1.47 -2.24 0.42
2016 0.79 0.64 0.25 3.16
2017 1.03 0.61 1.12 0.92
2018 -3.79 -3.56 -4.84 0.78
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Figure A.2: Cumulative Returns of Equally-weighted Portfolios based on BART Prediction in the
U.S. Stock Market from 2008 to 2018
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Decile 2
Decile 3
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count 132.000000 132.000000 132.000000 132.000000 132.000000
mean 0.000601 0.007844 0.008341 0.009953 0.012992
std 0.070858 0.057640 0.057130 0.058346 0.063342
min -0.262338 -0.220831 -0.229907 -0.206494 -0.231984
25% -0.030787 -0.018257 -0.018778 -0.021895 -0.018278
50% 0.006680 0.011392 0.010103 0.014230 0.016196
75% 0.039924 0.041739 0.041570 0.045706 0.047745
max 0.315145 0.233608 0.223172 0.174141 0.208085
Sharpe Ratio 0.008482 0.136083 0.146004 0.170585 0.205108
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Figure A.3: Cumulative Returns of Equally-weighted Portfolios based on NN3 Prediction in the
U.S. Stock Market from 2008 to 2018
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Sharpe Ratio 0.047940 0.112185 0.141201 0.175175 0.190688

A-7



Figure A.4: Cumulative Returns of Equally-weighted Portfolios based on OLS Prediction in the
U.S. Stock Market from 2008 to 2018
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mean 0.004389 0.007136 0.008529 0.009532 0.012392
std 0.070125 0.058769 0.060534 0.058818 0.061147
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B Additional Monte Carlo Simulations

We follow the data generating mechanism as described in Gu et al. (2019) as following, which allows
the data to be generated in panel data framework.

ri,t+1 = f(xi,t) + ei,t+1, ei,t+1 = βi,tvt+1 + εi,t+1, xi,t = (1, zt)> ⊗ ci,t, βi,t = (ci1,t, ci2,t, ci3,t)

and vt is assumed to be normally distributed

vt+1 ∼ N
(
0, 0.052I3

)
where I3 denotes the identity matrix with dimension as 3. For ci,t and ct, the structure is basically
as following

ci,t =


ci1,t
...

ciPc,t


Pc×1

ct =


c>1,t
...

c>N,t


N×Pc

In practical empirical implementation, zt is in general a Pz × 1 vector as following, which collects
all the macro variables common to each individual asset.

zt =


z1,t
...

zPz ,t


Pz×1

which implies that for each xi,t, it is a (Pz · Pc)× 1 vector as following

xi,t = zt ⊗ ci,t.

But in simulation, zt is assumed to be scalar.

Remark B.1 The above discussed construction, as argued in Gu et al. (2019), is economically
motivated to mimic factor structure in linear framework. To see this, suppose that

βi,t = θ1ci,t λt = θ2zt

where θ1 is Q× Pc matrix and θ2 is Q× Pz matrix and the factor structure implies that if expected
return is exposed to Q factors, then

E [ri,t+1] = β>i,tλt (B.1)
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and this is equivalent to

E [ri,t+1] = β>i,tλt = (θ1ci,t)> (θ2zt) = c>i,t︸︷︷︸
1×Pc

(
θ>1 θ2

)
︸ ︷︷ ︸
Pc×Pz

zt︸︷︷︸
Pz×1

=
(
z>t ⊗ c>i,t

)
vec

(
θ>1 θ2

)
= x>i,tθ

where
θ = vec

(
θ>1 θ2

)
To capture the fat-tail distribution property usually encountered in financial market, εi,t+1 is

sampled from t-distribution
εi,t+1 ∼ t5

(
0, 0.052

)
each characteristic scalar is simulated as following

cij,t = 2
N + 1rank (c̃ij,t)− 1 c̃ij,t = ρj c̃ij,t−1 + εij,t

and
ρj ∼ U[0.9, 1] and εij,t ∼ N (0, 1) .

and the univariate time series is simulated from AR(1) process with ρ = 0.95

zt = ρzt−1 + ut

and
ut ∼ N

(
0, 1− ρ2

)
.

Two cases for the functional form of f(·) is going to be considered as suggested in Gu et al.
(2019)

(a) f(xi,t) = (ci1,t, ci2,t, ci3,t × zt) where θ0 = (0.02, 0.02, 0.02)>

(b) f(xi,t) =
(
c2
i1,t, ci1,t × ci2,t, sgn(ci3,t × zt)

)
θ0 where θ0 = (0.04, 0.03, 0.012)>

where (a) is basically a linear setting where 3 covariates may generate impact on f(·); while (b)
involves non-linear setting where the interaction between ci1,t × ci2,t, square term c2

i1,t and the
discrete sign variables sgn(ci3,t×zt) as well play the role. To keep the consistency as in our empirical
implementation, we split the complete simulated data via ratio 2/3, i.e. 2/3 of the complete data is
used as for training; while the remained 1/3 data is used for calculating out-of-sample R square.

And we just find that in this simulation, for linear case, performance of BART in terms of
out-of-sample R square is not that good as simple OLS; while for nonlinear case, performance of
BART in terms of out-of-sample R square is better than simple OLS. Result is listed as following:

C Data Construction for Global Market

Firstly, I need to extract daily price data, the main procedure is as following

A-10



Model (a) (b)
Number of Covariates Pc = 50 Pc = 100 Pc = 50 Pc = 100
R2
OS of BART 1.90 2.24 6.46 6.28

R2
OS of OLS 3.84 3.45 3.91 3.21

BART/OLS 0.49 0.65 1.65 1.96

/* Collecting Price Data for Global Market from Compustat */

proc sql;

create table g_prc_data

as select gvkey,datadate,prccd,loc

from compd.g_secd

where datadate >= ’01JAN1988’d;

quit;

data g_prc_data;

set g_prc_data;

year = year(datadate);

month = month(datadate);

run;

/*

proc sort data=g_prc_data;

by gvkey year month;

run;

*/

proc sort data=g_prc_data;

by gvkey datadate;

run;

/*

proc means data=g_prc_data noprint;

by gvkey year;

var prccd;

output out=g_prc_avg;

run;

*/
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proc sql;

create table g_prc_avg as

select gvkey, year, mean(prccd) as prc_yr

from g_prc_data

group by gvkey, year;

quit;

proc sql;

create table funda_a as

select a.*, b.prc_yr

from funda_a a left join g_prc_avg b

on a.gvkey=b.gvkey and a.year=b.year;

quit;

data funda_a;

set funda_a;

mve_f = abs(prc_yr)*cshoi;

mve = log(mve_f);

run;

Hence, we can construct price of individual stock at monthly frequency so as to construct market
value mve_f. Where cshoi refers to the common shares outstanding available from compg.g_funda.
For more details, see my uploaded SAS code.

Simply by ignoring dividends, monthly return for global market can be constructed from daily
price data as following

Rt+1 = Pt+1
Pt

= Pt+1 − Pt + Pt
Pt

= 1 + Pt+1 − Pt
Pt

= 1 + rt+1 (C.1)

where t refers to the index for daily frequency. Suppose that for each month, there are T trading
days with T denoting the last day in that month, then by noting that

ZZP2
P1
× P3

ZZP2
× · · · ×

HHHPT−1
PT−2

× PT
H

HHPT−1
= PT
P1

which implies that return of holding a specific stock in that month can be simply calculated as

Rτ = PT
P1

and rτ = Rτ − 1

where the subscript τ simply represents the index for monthly frequency. Where the daily price
data is available through Compustat with the library as compd.g_secd and variable name as PRCCD.
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