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Abstract

Nonparametric econometrics constitutes the pivotal part of modern econometrics. By far the
major nonparametric methodologies documented in literature stem from kernel or sieve techniques
broadly studied in statistical and econometrics literature. The reason why nonparametric
econometrics is important is not only for modelling flexibility along with it but also for the
corresponding perspectives in terms of interpreting some long-standing issued statistics. Among
which kernel-based methods justify many of the discussions and the way how kernel functions work
is possible to be interpreted may vary from conventional econometrics perspective and modern
machine-learning (rigorously speaking statistical learning) perspective. This note will review
and compare Kernel techniques applied in nonparametric econometrics both from conventional
econometrics perspective and modern machine-learning perspective.
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1 Introduction

Nonparametric econometrics constitutes one major part of modern econometrics and most conven-
tional nonparametric modelling is either based upon kernel method or sieve method. Among which
kernel method is relatively a more well-developed either in terms of the longer history of being
discussed in literature or the corresponding backbone theories. Although various kernels (kernel
functions) as one of the major nonparametric tool have been widely investigated and employed
within academic studies or applications in practice, documented either in standard econometrics
textbooks (see for instance, Pagan and Ullah, 1999; Li and Racine, 2006; Racine, 2019) or the
related research papers, rarely is there any discussion about the mechanism through which kernels
work jointly from the theoretical and practical perspective, especially the way to interpret kernels
applied in econometrics from novel machine-learning (statistical leaning) perspective within the
nonparametric regression context. Consequently, this note attempts to review kernels applied in
econometrics, especially nonparametric econometrics for functional estimation and compare kernels
both from conventional econometrics perspective and novel machine-learning perspective. Hopefully
this piece of work would shed some light on our understanding, as econometricians, of kernels (kernel
functions) applied in econometrics, especially for those who are interested in bridging conventional
econometric modelling with novel machine-learning methodologies.

The following discussion of this note is going to focus on two parts: Section 2 will review
kernels and the major mechanism through which kernels work from conventional econometrics
perspective; Section 3 will alternatively provide way justifying the application of kernels from
machine-learning (statistical learning) perspective along with some mathematical results (mainly
about Mercer’s theorem) that serves as the theoretical ground for the corresponding analysis.
Related discussions about Monte Carlo experiments and practical applications will also be included
each as one subsection of this part as well. Finally Section 4 concludes the discussion made in this
note.

2 Kernels Interpreted from Conventional Econometrics Perspec-
tive

As commonly documented in statistics and econometrics literature, kernels (or kernel functions)
serves as way for estimating density function (see Rosenblatt, 1956; Parzen, 1962; Fix and Hodges,
1989). Pagan and Ullah (1999) makes a relatively discussion summarizing some well-known density
estimators, among which kernel density estimator is the best known not only for theoretical
researchers but also for researchers focusing applied researches.

The pivotal question to be addressed in terms of density function estimation is as following
(temporarily for discussion simplicity we may focus on the univariate case): suppose that the
observed data {Xi}

n
i=1 follows distribution with cumulative distribution function (CDF) F (x) along

with the corresponding probability density function (PDF) f(x). It is well-known from standard
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textbook (see Durrett, 2019) that under some regular conditions either F (x) or f(x) provides
necessary information for describing distribution, which naturally motivates estimating f(x) from
data, i.e {Xi}

n
i=1. The way commonly adopted in literature for handing estimation of this kind via

kernels relies on constructing estimator of f(x) taking the following functional form

f̂(x) =
1

nh

n

∑
i=1

k (
Xi − x

h
)

=
1

n

n

∑
i=1
kh (Xi − x) (1)

where k(⋅) refers to “kernel” function of this context, which is real-valued function over R, and h
commonly refers to “smoothing parameter” or “bandwidth” in literature. Obviously from density
function estimator as in (1) using kernels, we may regard it as the sample average of kernels evaluated
at different Xi −x. Interpreting density function estimator from this perspective actually sheds light
on how kernels are applied in nonparametric-regression framework later to be discussed.

In analogy to the proceeding discussed density function estimation, a more general and more
practical framework is nonparametric regression in which the pivotal modelling structure can be
parsimoniously summarized as following

Yi =m(Xi) + εi, i = 1, . . . , n (2)

where Xi as the p × 1 vector collecting all the corresponding covariates, εi as usual collects error
terms (or noise terms) which satisfy E[εi] = 0 and E [ε2i ∣Xi] = σ

2(Xi)
1. Actually, (2) serves as

a general representation for most of the statistical modelling. For instance, linear regression is
an affine special case of m(Xi) such that m(Xi) = X

⊺
i β, where β as the p × 1 vector collecting

all the regression coefficients. Hence, unravelling the functional form m(⋅), i.e., seeking for the
appropriate estimator m̂(x) of m(x), is the central issue to be addressed within the nonparametic
regression context. Where we employ the bold face letter x to denote the population counterpart of
observed covariates Xi and for the degenerate case where x degenerates to a scalar x, the objective
of econometricians is the same as that in the density function estimation.

Discussion corresponding to nonparametric regression using kernels primarily stems from the
following constructed estimator (likewise we temporarily focus on the univariate case for the sake of
discussion simplicity)

m̂(x) =
∑
n
i=1 Yikh (Xi − x)

∑
n
i=1 kh (Xi − x)

(3)

and obviously (3) can be interpreted intuitively as the weighted average of observations {Yi}
n
i=1 using

the weights constructed using function value of kernels (kernel functions) evaluated at observed
covariates {Xi}

n
i=1. As discussed in Nadaraya (1964) and Watson (1964), functional estimator of

1 Here for generality concern, we introduce notation σ2(Xi) to emphasize either heteroskedasiticty or homoscedasticity
are allowed, depending on whether σ2(Xi) varies across Xi or remains as a constant.
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this form can be easily extended the multivariate case where for each i, the observed covariate Xi

is a p × 1 vector. In the following part, I will demonstrate why it should be the case heuristically
under some implicit regular assumptions. Given the modelling structure specified as in (2), m(x) is
possible to be interpreted as the conditional mean of y given x, which further implies that

m(x) = E(y ∣ x) = ∫
yf(y,x)dy

f(x)
(4)

(4) motivates the construction of m̂(x) by replacing f(y,x) and f(x) with their nonparametric
kernel density estimator f̂(y,x) and f̂(x) in (4) respectively. This constructed estimator takes the
following form, 2

m̂(x) =
∑
n
i=1 YiKh (Xi − x)

∑
n
i=1Kh (Xi − x)

(5)

which is comparable to the univariate case as in (3). Detailed demonstration corresponding to why
it should be the case is left in A.1.

3 Kernels Interpreted from Machine-learning Perspective

3.1 Mathematical ground

Mercer’s theorem (Mercer, 1909; König, 1986) plays the fundamental role in justifying the application
of kernels in either statistical or econometrics modelling, hence we formally state this theorem and
the corresponding results as following.

Theorem 3.1 (Mercer (1909)) Assume (X , µ) is well-defined finite measure space. Suppose
k ∈ L∞ (X 2) is a symmetric real-valued function such that integral operator

Tk ∶ L2(X) → L2(X)

(Tk) f(x) ∶= ∫X
k(x,x′)f(x′)dµ(x′) (6)

is positive definite; that is, for all f ∈ L2(X), we have 3

∫X 2
k (x,x′) f(x)f(x′)dµ(x)dµ(x′) ⩾ 0 (7)

Let ψj ∈ L2(X) be the normalized orthogonal eigenfunctions of Tk associated with eigenvalues λj > 0,
sorted in non-increasing order. Then

2 Here to emphasize the difference int he context of multivariate setting that kernels (kernel functions) employed are
multivariate functions, I separately introduce the the notation Kh(⋅) to denote kernels (kernel functions) as the
multivariate functions where h = (h1, . . . , hp) refers to the vector of dimension p collecting chosen bandwidths.

3 It should be noted that here we do not use bold face letter x to emphasize that it is a vector for the multivariate case
but just x to denote the element from the generally defined measure space X . Hence both x a x′ can either be vector
for the multivariate case or scalar for the univariate case.
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1. {λj}j ∈ `2

2. k(x,x′) = ∑NHj=1 λjψj(x)ψj(x
′). Either NH ∈ N (where N refers to the set of positive integers)

or NH = ∞. For the case NH = ∞, the series converges absolutely and uniformly for almost
all (x,x′).

Implications from Theorem 3.1 are actually very rich (see in the standard textbooks, Vapnik, 1998;
Hastie et al., 2001, for more comprehensive results) and among which the most important one is
derived Mercer Kernel Map, which essentially stems from the second claim of Theorem 3.1. The
following discussion summarizes definition of Mercer Kernel Map and the associated properties.

Definition 1 (Mercer Kernel Map) Mercer Kernel Map, denoted by Φ, is defined as the map
from measure space X to `NH2 such that 4

Φ ∶ X → `NH2

x ↦ {
√
λjψj(x)}j=1,...,NH

(8)

Corollary 3.1 If a kernel (kernel function) satisfy the conditions required in the Theorem 3.1, then
Mercer Kernel Map is possible to constructed such that the positive-definite kernel k(⋅, ⋅) can be
expressed as the dot-product in high-dimensional space. Thus

⟨Φ(x),Φ(x′)⟩ = k(x,x′) (9)

for almost x,x′ ∈ X . Moreover, for any given ε > 0, there exists a finite map ΦNε to n-dimensional
dot product space 5 such that

∣⟨Φ(x),Φ(x′)⟩ − k(x,x′)∣ < ε

where ΦNε is as following

ΦNε ∶ x↦ {
√
λ1ψ1(x), . . . ,

√
λNεψNε(x)}

Theorem 3.1 along with the Corallay 3.1 lays the foundation for the application of kernels in nopara-
metric regression setting, especially from the machine-learning (statistical-learning) perspective. In
the following I will discuss how SVMs (Support Vector Machines), one pioneering but still prevalent
machine-learning method, are theoretically-grounded with the basis as Mercer’s theorem and how
SVMs are connected with nonparametric regression.

4 `NH2 refers to the space of square-summable sequences, that is Hilbert space of dimension Nε.
5 I want to emphasize here that Nε ∈ N for this setting refers to the dimension of corresponding dot product space and

varies across ε.
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3.2 Kernel-based methods as the classifier

Perhaps the most prevalent application of SVMs is classification. I will discuss how kernels (kernel
functions) play the role in the classification problem and this would also shed light on the interpre-
tation of kernels from machine-learning perspectives later within the more general nonparametric
setting. Essentially speaking all the classification problem about pairwise comparison and hence
binary classification constitutes the atom of the most of classification algorithms documented in
literature, so is the kernel-based machine-learning algorithm. Extension from binary classification
to the general multi-class classification is not seemingly hard and has been well discussed in some
pioneering researches (Platt, 1999; Lin et al., 2007). Actually binary classification is easily to be
embedded in the setting as in (2) by confining values of Yi as binary variables such that Yi = {±1}.
Accordingly within the nonparametric regression framework for classification, the general target of
econometricians is to seek appropriate estimation of m̂(x). It would be worthwhile to emphasize
that in comparison to the kernel estimator constructed from conventional econometrics perspective,
the kernel estimator constructed from machine-learning perspective does not necessarily require
the used kernels (kernel functions) to be normalized. As suggested by Mercer’s theorem, it is
possible to map the feature vector (i.e. covariates x ∈ X ) to another augmented feature vector z ∈ H,
where X and H generally refers to well-defined measure space (specifically for most of the practical
applications, X and H are Euclidean spaces of dimension NX and NH respectively). That is

z = Φ(x)

One key assumption (or alternatively it should be regarded as the implication from Mercer’s theorem)
for the kernels (kernel functions) to work in the context of classification is that data is able to
be classified based on the feature vector x ∈ X as long as it is able to be classified based on the
augmented feature vector z ∈ H and it is assumed that the augmented feature space features affine
structure and hence classification in H relies on specific hyperplane equipped with parameters
w ∈ `NH2 and b ∈R, which keeps the following affine structure

⟨w,Φ(x)⟩ + b = 0 (10)

With this readily specified hyperplane (namely the support vector), binary classification implemented
in H is based on the following classification rule

Proposition 3.1 For any observed data with feature vector x, hyperplane (support vector) catego-
rizes data into different classes based on the following decision function

f(x) = sign (⟨w,Φ(x)⟩ + b) (11)

where

sign(u) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if u ⩾ 0

−1 if u < 0
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Proposition 3.1 suggests the rule to be applied for binary classification using hyperplane but says
nothing bout how the associated parameters w and b should be tuned. The following proposition
how w and b are determined within optimization framework and from which it is possible see how
kernels (kernel functions) apply.

Proposition 3.2 Along with the suggested in classification rule in Proposition 3.1, hyperplane
parameters w and b are determined as the solutions of the following optimization problem.

minimize
w∈`NH2 ,b∈R

τ(w) =
1

2
∥w∥

2
2 (12)

subject to Yi ∗ [⟨w,Φ(Xi)⟩ + b] ⩾ 1 for all i = 1, . . . , n (13)

where `NH2 as usual refers to the square-summable space equipped with norm ∥⋅∥2.

In the following part of this note, I will discuss why it is the case that w and b are determined as
the way suggested from Proposition 3.2. Without loss of generality, we may assume that X1 and
X2 are two points belonging to two different sets separated by hyperplane ⟨w,Φ(x)⟩ + b. Moreover,
for the sake of simplicity we may assume that X1 and X2 are the points closet to the hyperplane
⟨w,Φ(x)⟩ + b in dot product space H. It should be kept in mind that for the temporarily discussed
binary classification problem, the sign of values taken by ⟨w,Φ(Xi)⟩ + b determines which set into
which data is to be categorized by this hyperplane and accordingly we may focus on the discussion
such that ⟨w,Φ(Xi)⟩+b = 1 when ⟨w,Φ(Xi)⟩+b takes positive values and likewise ⟨w,Φ(Xi)⟩+b = −1

when ⟨w,Φ(Xi)⟩ + b takes negative values. We summarizes these discussions as the following system
of equations,

⟨w,Φ(X1)⟩ + b = 1

⟨w,Φ(X2)⟩ + b = −1

⟨w, (Φ(X1) −Φ(X2))⟩ = 2 (14)

⇓

⟨
w

∥w∥2
, (Φ(X1) −Φ(X2))⟩ =

2

∥w∥2
(15)

where from (14) to (15), we just use the common affine property of Hilbert space. Moreover, the
L.H.S. of (15) is nothing but the projection of (Φ(X1) −Φ(X2)) on the unitary normal vector
w
∥w∥2

, hence it can be geometrically interpreted as Euclidean distance between X1 and X2 over the
direction specified by normal vector w if we restrict the corresponding Hilbert space to be Euclidean
space. This also suggests why τ(w) in (12) should be the objective function of the associated
minimization problem as minimizing τ(w) is equivalent to maximizing the distance between two
sets separated by the desired hyperplane.

Remark 3.1
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1. Constraint (13) plays the role guaranteeing that the decision function f(Xi) will take exactly
the value of +1 for Yi = +1 and other −1 for Yi = −1.

2. The lower bound claimed on the R.H.S. of specified constraint (13) does not necessarily take 1

but has to be a positive number since otherwise if this lower bound is specified as 0, it would
make no sense to minimize τ(w) = 1

2∥w∥
2
2. A quick discussion note on this is as following:

suppose the the lower bound on the R.H.S. of (13) is replaced with 0 and the (w, b) serves as
the solution of this optimization problem, then any scaled alternative combination such that
(w′, b′) = λ (w, b) with 0 < λ < 1 suggests that ∥w′∥2 < ∥w∥2 while (13) is still satisfied, hence
the corresponding optimization problem is not well-defined.

To obtain the solution of optimization problem specified in (12) and (13) so that we may identify
the functional form of the decision function f(x), we set up the standard Lagrangian as following

L(w, b) ∶=
1

2
∥w∥

2
2 −

n

∑
i=1
αi [Yi ∗ (⟨w,Φ(Xi)⟩ + b) − 1] (16)

where α = (α1, . . . , αn) as the vector of n-dimension collecting Lagrangian-multipliers. The first
order derivative taken with respect to w and b respectively yields the standard F.O.C. as following

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂b
L(w, b,α) = 0

n

∑
i=1
Yiαi = 0

⇒

∂

∂w
L(w, b,α) = 0 w =

n

∑
i=1
αiYiΦ(Xi)

(17)

and (17) implies that

⟨w,Φ(x)⟩ + b

=
n

∑
i=1
Yiαi⟨Φ(Xi),Φ(x)⟩ + b (18)

which is the desired hyperplane for classification. Moreover, the implications from (18) are summa-
rized as following,

1. As suggested by Mercer’s theorem, we may replace ⟨Φ(Xi),Φ(x)⟩ with the corresponding
kernel (kernel function), thus

⟨w,Φ(x)⟩ + b =
n

∑
i=1
Yiαik (Φ(Xi),Φ(x)) + b

which implies the role played by kernels in this setting and how it is comparable to the
kernel-based functional estimator constructed from conventional econometrics perspective.

2. Application of standard Lagrangian techniques in solving optimization problem commonly
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requires the αi ⩾ 0 (i = 1, . . . , n) along with the following complimentary conditions (see
Rockafellar, 1970, which is referenced as Karush-Kuhn-Tucker, KKT conditions as well)),

αi [Yi⟨Φ(Xi),Φ(x⟩) + b − 1] = 0, i = 1, . . . , n (19)

KKT conditions as in (19) along with the F.O.C. constitutes the standard system of equations
with (n+NH + 1) equations and (n+NH + 1) variables to be solved out, which is theoretically
tractable under some regular conditions. Moreover, {αi}ni=1 as the Lagrangian multipliers is
comparable to the normalized weights of kernel-based functional estimator constructed from
conventional econometrics perspective (specifically the summation of kernel function values
evaluated at observed data points).

3. Although the above specified system of equations is theoretically tractable, as suggested in
(18), the desired hyperplane for classification is completely determined by {αi}

n
i=1 and b and

hence how to equivalently obtain {αi}
n
i=1 and b would be of more interests. Fortunately it is

justified by the dual theory by the modern convex analysis. Specifically, for the established
Lagrangian as in (16), we may represent w and b in terms of {αi}ni=1 using the F.O.C. in (17)
such that for any fixed α,

T (α) = L =
1

2
∥w∥

2
2 −

n

∑
i=1
αi [Yi ∗ (⟨w,Φ(Xi)⟩ + b) − 1]

=
1

2

n

∑
i=1

n

∑
j=1

αiαj⟨Φ(Xi),Φ(Xj)⟩ −
n

∑
i=1

n

∑
j=1

αiαj⟨Φ(Xi),Φ(Xj)⟩ +
n

∑
i=1
αi

=
n

∑
i=1
αi −

1

2

n

∑
i=1

n

∑
j=1

αiαj⟨Φ(Xi),Φ(Xj)⟩

The we may follow the standard dual theory established in convex analysis to set up the
associated dual optimization problem as following

maximize
α∈R

T (α) =
n

∑
i=1
αi −

1

2

n

∑
i=1

n

∑
j=1

αiαj⟨Φ(Xi),Φ(Xj)⟩ (20)

subject to αi ⩾ 0 i = 1, . . . , n (21)

n

∑
i=1
αiYi = 0 (22)

which is standard constrained quadratic optimization problem. And once again we need to
replace ⟨Φ(Xi),Φ(Xj)⟩ with appropriate kernels (kernel functions), which is arguably the
place where kernels play the role in this setting.
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3.3 Kernel-based methods as the regression

As we mentioned previously, kernel-based analysis discussed in subsection 3.2 is able to be extended
to the general nonparametric regression framework, which constitutes the discussion of this part
and this is also the what I want to emphasize the most as it nicely sets up the connection between
kernels (kernel functions) and nonparametric regression and accordingly suggests the way we
interpret the mechanism through which kernels (kernel functions) apply in econometrics (specifically
nonparametric regression) from machine-learning (statistical learning) perspective. In terms of
modelling framework, Extension from classification to regression just corresponds to relaxing
restrictions that Yi = {±1} so that in general Yi can take any value from R as response variable.
Likewise, we want to make our analysis embedded in the optimization framework but with slightly
modified constraints as Yi as response variable now is allowed to take any value from R.

The idea that using Mercer Kernel Map to transfer the original data to augmented data in the
corresponding Hilbert space H still applies. Then in analogy to the discussion corresponding binary
classification, we set up the following optimization problem

minimize
w∈`NH2 ,b∈R

ρ(w) =
1

2
∥w∥

2
2 +

C

2n

n

∑
i=1
ε2i (23)

subject to Yi = ⟨w,Φ(Xi)⟩ + b + εi i = 1, . . . , n (24)

where C is a positive constant.

Remark 3.2 As we can see from the above specified optimization problem, both the objective
function and the associated constraints are slightly different from that in the previous discussion
about kernel-based methods applied in classification, which are summarized as following respectively

1. In comparison the objective function τ(w) (12) as we discussed in the classification problems,
the objective function ρ(w) claimed in (23) includes one more added term C

2n ∑
n
i=1 ε

2
i which

can be interpreted as the average fitting error.

2. As for the associated constraints (24) in comparison to the counterpart in (13), the key
difference stems from the introduced terms εi measuring the fitting error.

The corresponding Lagrangian is established as following

L(w, b, ε,α) ∶=
1

2
∥w∥

2
2 +

C

2n

n

∑
i=1
ε2i −

n

∑
i=1
αi [⟨w,Φ(Xi)⟩ + b + εi − Yi] (25)

where I introduce the additional notation ε = (ε1, . . . , εn) and α = (α1, . . . , αn) to denote the vectors
collecting error terms and multipliers respectively.

As the above specified optimization problem does not involve inequality constraints, the corre-
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sponding F.O.C. is specified as following

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂w
L(w, b, ε,α) = 0 w =

n

∑
i=1
αiΦ(Xi)

∂

∂b
L(w, b, ε,α) = 0

n

∑
i=1
αi = 0

⇒
∂

∂εi
L(w, b, ε,α) = 0 αi =

C

n
εi i = 1, . . . , n

∂

∂αi
L(w, b, ε,α) = 0 ⟨w,Φ(Xi)⟩ + b + εi − Yi = 0 i = 1, . . . , n

(26)

(27)

(28)

(29)

This system of equations as specified in (26) to (29) is theoretically well-defined system as it
essentially involves 4 sets of equations with 4 sets of unknowns. Specifically to see how the final
result (desired hyperplane) takes the input as α and b, we use (26) and (28) to eliminate w and ε.
That is for each i, . . . , n, substituting w and εi in (29) using (26) and (28) respectively yields

n

∑
j=1

⟨Φ(Xi),Φ(Xj)⟩αj + b +
n

C
αi − Yi = 0 (30)

which can be parsimoniously represented in matrix form as following

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 ι⊺n

ιn K + n
C In

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b

α

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

y

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(31)

where K is a n × n matrix with the (i, j) entry as ⟨Φ(Xi),Φ(Xj)⟩. Moreover, y = (y1, . . . , yn)
⊺ with

the i-th element yi as the realized value of Yi. Likewise to see how kernels (kernel functions) apply
here, we need to replace ⟨Φ(Xi),Φ(Xj)⟩ with appropriate kernel function k(⋅, ⋅) evaluated at Xi and
Xj as suggested from Mercer’s theorem. Finally with α̂ and b̂ solved out from (31), the estimated
functional form of m(x) as following

m̂(x) =
n

∑
i=1
α̂ik(x,Xi) + b̂ (32)

Remark 3.3

1. It seems that the estimator constructed in (32) does not involve variable Yi, but one should
keep in mind that α̂ is estimated from (31) and hence response variable is implicitly involved.

2. We may rewrite (5) and (32) in parallel as following for the sake of comparison,

Conventional Econometrics Machine-learning

m̂(x) = ∑
n
i=1 YiKh(Xi−x)
∑ni=1Kh(Xi−x) m̂(x) = ∑ni=1 α̂ik(x,Xi) + b̂
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Comparisons made between these two estimated functional forms of m(x) implies that in
terms of functional structure, kernel-based estimator of m(x) from conventional Econometrics
perspective is similar to that constructed from machine-learning perspective, which can be
essentially interpreted as the weighted average of kernel functions evaluated at observed data
points. However as we have discussed in the main context, these two estimators are theoretically
oriented in different way. Estimators constructed from conventional econometrics perspective
is deeply rooted in density function estimation as the main intuition from this perspective
is to construct weights using kernels (kernel functions) evaluated observed covariates and
accordingly take the weighted average of response as the desired estimation of functional form;
while estimators constructed from machine-learning perspective, as we have emphasized in the
mathematical ground part, the key idea (alternatively the mathematical foundation) is that
Mercer kernel map can map covariates in feature space to augmented Hilbert space in which
the transformed data keeps the affine structure and dot product attached to this augmented
Hilbert space can be approximately depicted well by corresponding kernels (kernel functions).

3. As implied from previous discussions, kernels (kernel functions) customarily adopted in
standard econometrics analysis, Kh(⋅), are closely connected with kernels (kernel functions)
applied from machine-learning perspective. Specifically both Kh and k(⋅, ⋅) for the first place have
to satisfy the symmetric conditions required. Secondly “smoothing parameter” or “bandwidth” h

(vector h degenerates to scalar h as modelling setting changes from multivariate to univariate)
associated with Kh(⋅) is comparable to the tuning parameter σ attached to the Gaussian
(Laplace) Radial Basis Function (RBF) kernels 6 in the context where kernels are applied to
implement nonparametric regression as we discussed in the proceeding main context. Tuning
for h or σ can either be customized specification or empirical estimation based on observed data.
Usually σ lies in between 0.1 and 0.9 quantiles of ∥x − x′∥22 hence the thumb rule associated
with the later empirically-determined configuration of σ for most of the empirical applications
takes the median of 0.1 and 0.9 quantiles based on data (observed covariates in feature space).

4. The way we establish Lagrangian as in (25) implicitly suggests that applying kernels in fitting
nonparametric regression automatically accommodate the heterogeneity captured by error term
as for this case the F.O.C associated with error terms constitutes part of the optimal conditions
as summarized from (26) to (29). Actually as the definition of σ suggests, σ−1 is comparable to
the h for univariate case or the homogeneous choice of bandwidth h1 =, . . . ,= hp for multivariate
case and accordingly configuration of σ determines “smoothness” or the in-sample goodness of
fit and this “σ”-effect associated with the choice of kernels are to be demonstrated in the toy
practical practical example contained the next subsection.

6 Gaussian (Laplace) Radial Basis Function (RBF) kernels are commonly adopted in literature takes the form
exp(−σ∥x − x′∥22), where σ as the tuning parameter usually refers to “inverse kernel width”.
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3.4 Monte Carlo and practical examples

For the Monte Carlo demonstration, I use the following DGP (data generating process) to simulate
data used as in the SVMs. For the sake of visually demonstrating the learning results as the input
from SVMs, I consider the case where n = 200 p = 2. Specifically, 7

Yi =m (Xi) + εi = sin (xi,1 + x
2
i,2) + (xi,1 + x

2
i,2) + εi, εi ∼ N (0, σ2) , 1 ⩽ i ⩽ n. (33)

where xi,j is generated uniformly from [−2,2] and σ = 0.1. Obviously m(⋅) specified in (33) is
non-linear and readily suitable for application of nonparametric regression. Data collected in
{Yi,Xi}

n
i=1 serve as the input of SVMs and plot 3-D surface using the learning predictions generated

from SVMs. Corresponding results are demonstrated as following and this suggests that kernels
commonly employed in conventional nonparametric econometrics studies are in line with kernel-based
methodologies (specifically SVMs) but could be interpreted from different perspectives (as the
comparison we have discussed in the previous context).

[Place Figure 1 about here]

With the development of modern computational tools, implementing kernel-based machine-
learning algorithm within the setting of nonparametric regression is approachable on different
platforms, among which LIBSVM developed along with Chang and Lin (2011) as one of the pioneering
tools package (and by far the most influential one for its widely successful applications practice)
provides efficient C and C++ routines for handling required optimization problem using Sequential
Minimization Optimization algorithm (SMO). Recently within R community (R Core Team, 2020),
kernlab (Karatzoglou et al., 2004) provides by far the most comprehensive interfaces to LIBSVM for
implementation of various kernel-based machine-learning algorithms.

3.5 Practical application examples

To be included more comprehensively. But currently here is a quickly demonstrated toy example
using data collected in Holst et al. (1996). We demonstrate both the scatter plot of the original
data and the fitting curve generated from kernel-based methods applied from machine-learning
perspective. Gaussian (Laplace) Radial Basis Function (RBF) kernels are applied with sigma

specified as σ = 1.

[Place Figure 2 about here]

7 To rule out the possible confusion about notation, we emphasize it here that throughout this paper where the random
variables are about R.H.S. covariates, we use capital Xi to denote the corresponding i-th observation. Xi could either
be scalar (univariate case) for which Xi degenerates to xi and xi as a specific number referring to the realized value of
Xi; or vector (multivariate case) for which Xi = (xi,1, . . . , xi,p) and xi,j (1 ⩽ j ⩽ p) as a specific number referring to
realized value of the j-th covariate of Xi. The reason that we want to distinguish capital letter X from x as different
notation is in light of modern views on random variables that random variables (or observed data) should be regarded
as measurable functions defined over appropriate measure space with well-defined structure (see, Durrett, 2019).
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As we have mentioned in Remark 3.3, the effect of the choice of σ is demonstrated well with
this example. In the following example, I apply kernel-base methods on the same dataset but with
different configuration of σ with σ specified as 0.1, 10 and the corresponding empirical estimation
respectively.

[Place Figure 3 about here]

To demonstrate a relatively more practical application, we turn to focus on the discussion about
expected return as the function of firm size (usually measured as the market capitalization, for
instance Nard and Zhao (2020)). It corresponds closely to the long-standing discussion volumi-
nously documented in cross-sectional asset pricing literature and firm size serves as one of the
pioneering anomalies complementing standard CAPM theory (Fama and French, 1992, 1993, 1996).
Ever since then the universe of anomalies documented in literature has expanded much and this
induced dimensionality challenge motives the recent focus of academia community on applying
new methodologies for handling this issue. Specifically, anomalies often referenced in literature are
essentially different portfolios based on sorting on different cross-sectional characteristics (including
the time-series dimension lead-lag effect such as anomalies of momentum class). Consequently for
each cross-section, we may use the i as the index for cross-sectional stocks and all p characteristics
constructed for firm i are collected in Xi = (xi,1, . . . , xi,p), which is consistent with the notation we
used in the previous discussion. Ever since Harvey et al. (2016), reproducible and comprehensive
construction of anomalies has increasingly gained much attention and by far the most well-cited
construction includes the one initially released in Green et al. (2017) and many other separately
extended construction of firm-level characteristic data including (Freybergerk et al., 2019; Gu et al.,
2019; Demiguel et al., 2020; Kozak et al., 2020) and recently by far the most comprehensive one
released along with Chen and Zimmermann (2020a,b). For the setting in which our discussion
relies, we will use xi,Size to denote realized value of Size for stock i while xi,−Size refers to the realized
values of remained characteristics. Furthermore, we replace response variable Yi with the adjusted
return associated with firm i at month t (Ri,t), collected from Center for Research in Security Prices
(CPSP) database and merge this asset return data with the characteristics data constructed in
Chen and Zimmermann (2020a) 8 at monthly frequency with one month lag. 9 To circumvent
the computational burden, we apply the kernel based algorithms on each cross-section and take
time-series average as the finally fitted curve to demonstrate the Size (market value) effect on
individual stock return. The final result is demonstrated as following,

8 We appreciate the data construction work along with the kindly shared data by Andrew Y. Chen and Tom Zimmerman.
They also kindly establish a website at https://sites.google.com/site/chenandrewy/open-source-ap?authuser=0
for detailed description of this work.

9 Given this panel data structure, rigorously speaking we need to introduce additional subscript to emphasize the
time-series dependency such that Xi,t refers to data in feature space (characteristics) and Ri,t refers to response
variable (adjusted return of stocks at monthly frequency). But temporarily for the sake of simplicity we just omit the
subscript and moreover as theoretically it is possible for us to stack all the cross-sectional data for comprehensive
analysis but surely will this increase computational burden.
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[Place Figure 4 about here]

As discussed in Fama and French (2008), microcaps (commonly referred to stocks associated relative
small market values, specifically those stocks with market equity below the 20th percentile of NYSE
stocks) represent only 3% of the total market capitalization of the NYSE-Amex-NASDAQ universe,
but account for 60% of the number of stocks. This empirically documented result implies that the
result graphically demonstrated in Figure 4 should be interpreted mainly from the left-hand-side of
the kink point, which suggests the negative relationship between cross-sectional expected return and
size. This implication is actually in line with the broadly documented empirical results in classical
finance literature and can be further supported well via checking the cumulative return associated
portfolio constructed from sorting on size (market value). 10

[Place Figure 5 about here]

4 Conclusion

This paper as one remark note reviews and compares how kernels (kernel functions) are applied
in nonparametric econometrics. One illuminating discussion done in this paper corresponds to
the suggested way to interpret the mechanism through which kernels apply in nonparametric
regression framework (which is arguably the backbone for most of the discussions corresponding to
nonparametric econometrics) from machine-learning perspective and compare it with that interpreted
from the perspective of conventional nonparametric econometrics (specifically the way to interpret
kernels as tools for density function estimation). Although Mercer’s theorem as one part of this
note is a well-established result in both Mathematics and machine-learning literature, from my
personal perspective, it is still worthwhile bridging the associated implications from this theorem
along with the suggested framework for analysis with framework commonly adopted in conventional
econometrics analysis as it would not only strengthen our understanding of kernels (kernel functions)
but also shed light on thoughts about how conventional econometrics and modern machine-learning
methodologies are inherently connected.

10Data construction and how this long-short portfolio is constructed are left in the appendix for more detailed discussions.
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Figures and Tables

Figure 1
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Note: In the above figure, we visually demonstrate the Monte Carlo examples discussed in the subsection 3.4 of

main context. Specifically, (a) demonstrates the surface generated from m (Xi) as specified in (33); (b) demonstrates

the surface generated from fitting from SVMs; (c) demonstrates jointly the fitting from SVMs and observed data

(red asterisk points). Obviously the kernel-based machine-learning algorithm SVMs, which as discussed in the main

context serve as an alternative way interpreting the mechanism through which kernels (kernel functions) work in

nonparametric regression setting, does a good job unravelling the non-linear data-generating mechanism but does not

suffer from the over-fitting issue that much.
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Figure 2
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Figure 3

(a) σ = 0.1
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(b) σ = 10
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(c) empirical estimation
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Note: In the above figure, we visually demonstrate the fitting effect associated with different σ configuration for

kernels (kernel functions) applied. Specifically from the left panel to the right panel, the σ is configured as σ = 0.1, 10

and empirically estimated using the average quantiles of observed data, which is estimated as σ̂ = 14.73. The main

point to be emphasized here is that as σ increases, weights are assigned more on the neighbouring area of each data

point in feature space and this is basically the reason why visually the in-sample goodness of fit increases as σ increase.

However, as well discussed in standard statistical learning literature, the goodness of fit does not necessarily imply

out-of-sample prediction accuracy and configuration of σ varies across different practical applications.

16



Figure 4. Size Effect on Expected Return
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Note: In the above figure, we visually demonstrate the average (over time-series dimension) fitted effects of size

(measured by market value and and scaled to [0,1] interval) on expected return. That is we want to approximately

pin down the suggested functional form of return against scaled size using the time-series average of each cross-section.

Figure 5
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Note: In the above figure, we visually demonstrate the cumulative return of long-short portfolio constructed from

sorting on size (market value) in the way as we discussed in the main context.
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Series A (1961-2002), 26, 359–372. [Cited on pages 2 and A-1.]

20



Appendix

A Auxiliary Proofs

A.1 Nonparametric kernel functional estimator

Proof. As suggested in Nadaraya (1964) and Watson (1964) and some standard nonparametric
textbooks (Pagan and Ullah, 1999; Li and Racine, 2006), kernels (kernel functions) chosen within
this context are usually associated with bandwidth determining smoothness. For the multivariate
case to be discussed, let (hy,h) = (hy, h1, . . . , hp) and h = (h1, . . . , hp) denote the vectors collecting
chosen bandwidths for f̂(y,x) and f̂(x) respectively. Thus as we have discussed in the main context,
f̂(y,x) and f̂(x) take the following forms respectively

f̂(y,x) =
1

n

n

∑
i=1
Kh (Xi − x)khy (Yi − y)

=
1

nhyh1 . . . hq

n

∑
i=1

K (
Xi1 − x1
h1

, . . . ,
Xiq − xq

hq
)k (

Yi − y

hy
)

and

f̂(x) =
1

n

n

∑
i=1
Kh (Xi − x) =

1

nh1 . . . hq

n

∑
i=1

K (
Xi1 − x1
h1

, . . . ,
Xiq − xq

hq
)

To obtain the functional form of (5), it suffices to derive the numerator of (5), which is demonstrated
as following

∫ f(y,x)dy =
1

nhy

n

∑
i=1

Kh (Xi − x)∫ yk (
Yi − y

hy
)dy

=
1

nhy

n

∑
i=1

Kh (Xi − x)∫ yk (
y − Yi
hy

)dy

=
1

n

n

∑
i=1

Kh (Xi − x)∫ (Yi + hyu)k(u)du

=
1

n

n

∑
i=1

Kh (Xi − x)Yi

where from the first equation to the second equation we use symmetric property of kernels (kernel)
functions and from the second to third equation we just the apply the standard change of variables
trick and the fourth equation stems from the corresponding properties of kernels such that ∫ k(u) = 1

A-1



and ∫ uk(u)du = 0. With numerator of this form derived, it is straightforward to have

m̂(x) =
∑
n
i=1 YiKh (Xi − x)

∑
n
i=1Kh (Xi − x)

as demonstrated in the main context. ◻

B Data and Long-short Portfolio Construction

The firm-level characteristic-data constructed in Chen and Zimmermann (2020a, henceforth CZ2020a)
does provide by far the most comprehensive universe of firm-level characteristics of U.S. stock
market. However as it is relatively more standard to construct firm size (measured by market value)
from database like COMPUTAT and CRSP, CZ2020a does not publish the corresponding data on the
website, Open Source Asset Pricing . Consequently we follow the standard procedure implemented
in Fama and French (1992, 1993) to construct firms’ market values via me = prc × shrout, where
prc refers to the acronym of stock price or Bid/Ask average while shrout refers to the shares
outstanding following the standard labelling scheme in CRSP. One point to be emphasized here is
for the case when different permnos are identified by the same CRSP permanent company number
permco, we need to aggregate market values attached to these permnos as the corresponding market
values shared by all these assets identified by these permnos. Once the size data (measured by
market value) is constructed, it is normalized to lie in between 0 and 1 as in Freybergerk et al.
(2019) such that

rc size
i,t =

rank (c size
i,t )

nt + 1
(B.1)

where cisize,t refers to the originally unscaled size values associated with stock i and nt refers to the
total number of firms available for observations at time t. Then the corresponding portfolio weights
used to construct long-short portfolios are established as following

z size
i,t =

(rc size
i,t − rc

size
t )

∑
nt
i=1 ∣rc

size
i,t − rc

size
t ∣

(B.2)

where
rc size
t =

1

nt

nt

∑
i=1
rc size
i,t .
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