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1. Two Alternative Representation of Expected Information

Recall that a specific model M with x as observed data and θ as the associated parameters of

interest is defined as

M≡ {p (x | θ) | x ∈ X , θ ∈Θ} (1)

and the corresponding expected information for a given modelM for prior q(θ) is

I{q | M} =
"
X×Θ

p(x | θ)q(θ) log
(
p(θ | x)
q(θ)

)
dxdθ

=
"
X×Θ

p(θ | x)p(x) log
(
p(θ | x)
q(θ)

)
dxdθ

=H{q(θ)} −
∫
p(x)H{p(θ | x)}dx

=H{q(θ)} −
∫
q(θ)

∫
p(x | θ)H{p(θ | x)}dxdθ (2)

=H{q(θ)}+
∫
q(θ)

∫
p(x | θ) logp(θ | x)dxdθ (3)

where

H{q(θ)} = −
∫
q(θ) logq(θ)dθ

is called the entropy of q(θ). As long as we can have

p(θ | x) =
q(θ)p(x | θ)∫
q(θ)p(x | θ)dθ

p(x) =
∫
q(θ)p(x | θ)dθ =⇒ p(x)p(θ | x) = q(θ)p(x | θ)

*In this summary note I basically discussed some important concepts and associated techniques used in Bayesian
Analysis. All errors are my own. You may contact me at yaohan.chen.2017@phdecons.smu.edu.sg
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which is guaranteed by the assumption that∫
q(θ)p(x | θ)dθ <∞

Hence (2) and (3) are two representation for expected information respectively. Rewrite (2) and (3)

as following respectively,

H{q(θ)} −
∫
q(θ)

∫
p(x | θ)H{p(θ | x)}dxdθ

=
∫
q(θ) log

{
exp

(
−
∫
p(x|θ)H{p(θ | x)}dx

)/
q(θ)

}
dθ (4)

H{q(θ)}+
∫
q(θ)

∫
p(x | θ) logp(θ | x)dxdθ

=
∫
q(θ) log

{
exp

(∫
p(x | θ) logp(θ | x)dx

)/
q(θ)

}
dθ (5)

It is easy to observe that (4) and (5) can be formally written as

I{q | M} =
∫
q(θ) log

(
f (θ)
q(θ)

)
dθ

with

f (θ) = exp
{
−
∫
p(x | θ)H{p(θ | x)}dx

}
in (4) and f (θ) = exp

{∫
p(x | θ) logp(θ | x)dx

}
in (5)

Since we want to select q to maximize I{q | M}, and note that due to Jensen Inequality,∫
q(θ) log

(
f (θ)
q(θ)

)
6 log

(∫
q(θ) ·

f (θ)
q(θ)

dθ

)
= log

(∫
f (θ)dθ

)
and this implies that f (θ) ∝ q(θ) and q(θ) should be necessarily of the following form

q(θ) ∝ exp
{
−
∫
p(x | θ)H{p(θ | x)}dx

}
(6)

or

q(θ) ∝ exp
{∫

p(x | θ) logp(θ | x)dx
}

(7)

and this may serve as a heuristic justification for the construction of fk(θ) in the main theorem in

Berger et al. (2009), thus

fk(θ) = exp
{∫
Tk

p(tk | θ) log[π∗(θ | tk)] dtk
}

2



2. A Heuristic Normal Example

2.1. Entropy for normal distribution

Normal density has the following form with mean µ and variance σ2

f (x) =
1

√
2πσ

exp

− (x −µ)2

2σ2


Entropy is given as∫

−f (x) logf (x)dx = −
∫

1
√

2πσ
exp

− (x −µ)2

2σ2


− log

(√
2πσ

)
−

(x −µ)2

2σ2

 dx
= log

(√
2πσ

)
+

1
2

(8)

which is obviously only correlated with σ .This result will be used in the demonstration of the next

subsection.

2.2. Jeffreys’ prior should be adopted

Suppose that x = {x1, · · · ,xn} is sample from iid normal distribution with mean µ and variance σ2.

Model is

M≡ {p(x | µ,σ ),x ∈ X} (9)

and

p(x | µ,σ ) =
1

(
√

2πσ )n
exp

− n∑
i=1

(xi −µ)2

2σ2

 (10)

Denote θ as the parameter of interest (could be either µ or σ ) and

I (θ) = −E
[
∂2

∂θ∂θ′
logf (x | µ,σ )

]
as the Fisher Information Matrix with

f (x | µ,σ ) =
1

√
2πσ

exp

− (x −µ)2

2σ2

 .
Straightforward calculation gives

I (θ) =


1
σ2 if θ = µ

2
σ2 if θ = σ

(11)
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Further note that for a given prior q(θ), in general the associated posterior is

q∗(θ) ∝ elogp(x|θ)q(θ)

Denoting l(θ) = logp(x | θ) and expanding it around θ̂ to the second order

l(θ) ≈ l(θ̂) + l′(θ̂)(θ − θ̂) + l′′(θ̂)(θ − θ̂)2
/
2

where θ̂ is the associated MLE which necessarily implies that l′(θ̂) = 0 and

θ̂ =


∑n

1 xi
n if θ = µ√∑n

1(xi−µ)2

n if θ = σ

Hence approximately for large n,

q∗(θ) ∝ el(θ̂)q(θ̂)exp
{
l′′(θ̂)(θ − θ̂)2

/
2
}
.

Note that

l′′(θ̂) =
n∑
1

∂2

∂θ∂θ′
logf (xi | µ,σ )

∣∣∣∣∣∣∣
θ=θ̂

and
1
n

n∑
1

∂2

∂θ∂θ′
logf (xi | µ,σ )

∣∣∣∣∣∣∣
θ=θ̂

P−−−−−→ E

[
∂2

∂θ∂θ′
logf (x | µ,σ )

]∣∣∣∣∣∣
θ=θ̂

= −I (θ̂)

Hence

q∗(θ) ∝ exp
{
−nI (θ̂)(θ − θ̂)2

/
2
}

(12)

Thus the posterior density will be approximately proportional toN
(
θ̂,
I(θ̂)−1

n

)
. For a given θ̃,

θ̂
p(x|θ̃)
−−−−−→ θ̃

Thus for n large enough, approximately it is possible to have entropy for posterior density from (8)

and (11) as

H{p(θ | x)} ≈ log
(√

2π
1

nI (θ̂)

)
+

1
2
≈ C1 log σ̃ − logn+C2

where C1 and C2 is just constant. And from (6) it could be heuristically claimed that prior

maximizing expected information should be

q(θ) ∝ exp {−E [H{θ | x}]} ∝ exp {−C1 log σ̃ + logn−C2} ∝
1
σ̃

(13)
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Suppose that prior is continuous, then asymptotically and approximately we should have

q(θ) ∝ 1
σ

(14)

which is the Jeffreys’ Prior. More general results is available from Clarke (1994)
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