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1. Two Alternative Representation of Expected Information

Recall that a specific model M with x as observed data and 6 as the associated parameters of

interest is defined as
M={p(x|0)|xeX, 60O} (1)

and the corresponding expected information for a given model M for prior g(0) is

Ig | M) = ﬂX x| e>q<9>1og(” ‘q%)" ))dxde

_ p(o Ix))
= fLXQp(Q |x)p(x)log( ) dxdo

- Hq(0)) - [ pe)H(p(0 | x))dx

— H{q(0)) - hq(@)fpm9>H{p<e|x>}dxd9 2)
'

= H{q(0)) + q<9>jp<x|9>logp<e|x>dxd9 3)

where
H{q(0)) = —fq(eﬂog 4(0)d0

is called the entropy of g(6). As long as we can have

p(6]x) = Iq‘f(g)p”(fl';)d@ p(x)zfq<9>p<x|e>de . p)p(0 %) = 4(O)p(x] 0)

*In this summary note I basically discussed some important concepts and associated techniques used in Bayesian
Analysis. All errors are my own. You may contact me at yaohan.chen.2017@phdecons.smu.edu.sg
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which is guaranteed by the assumption that

[a0pix 1030 <o

Hence (2) and (3) are two representation for expected information respectively. Rewrite (2) and (3)

as following respectively,

H{q(0)) —qu)fp(x | O)H(p(6 | x))dxd6

: qunog{exp(—fp(xl@)H{p(@ ) /q<6)}de (4)

HUO) + [ 4(0) [ plx| 0)1ogp(@] x)dxdo
: qu)log{exp(fp(x 10)10gp(© |x>dx) /q<6>}de (5)

It is easy to observe that (4) and (5) can be formally written as

I{qw}:jq(e)log(%)de

with
£(0) = exp{—fp(x | 0)H{p(0 |x>}dx} in (4) and f(0) = exp{fp(x 10)logp(0 | x)dx} in (5)

Since we want to select q to maximize I{q | M}, and note that due to Jensen Inequality,

f(0) f0) .\ _
fq(@)log(m) < log(Jq(G) . md@) = log(Jf(B)dQ)

and this implies that f(0) o< g(6) and g(0) should be necessarily of the following form

9(0) o< exp {—fp(x |0)H(p(6)| x)}dx} (6)

or

4(0) o exp{fp(x 16)logp(6 |x>dx} @)

and this may serve as a heuristic justification for the construction of f(6) in the main theorem in
Berger et al. (2009), thus

£(0) = exp{fyp(tk |0)log [1(0 | )] dtk}



2. A Heuristic Normal Example

2.1. Entropy for normal distribution

Normal density has the following form with mean y and variance o

1 (x—p)°
f(x)_\/%aexp{_ 252 }

Entropy is given as

— )2 Ry
J_f(x)logf(x)dx = —f 217-(0 eXp{—(ngle) }[_log(ma) 3 (Xzale) l dx

:1og(\/ﬂa)+% (8)

which is obviously only correlated with ¢.This result will be used in the demonstration of the next

subsection.

2.2. Jeffreys’ prior should be adopted

Suppose that x = {x;,---,x,} is sample from iid normal distribution with mean y and variance 2.

Model is

M={p(x|po)xeX} (9)
and
1 = (x; — p)?
P(ﬂ%@—mexp{—; Py } (10)

Denote 0 as the parameter of interest (could be either y or o) and

82
7(0)= —E[Wlogf(x | %U)]

as the Fisher Information Matrix with

1 (x—p)°
f(x|y,o)_\/%0exp{— 752 }

Straightforward calculation gives

r .
; lfe—‘bl
1(0)=1") (11)
—2 if920'
o



Further note that for a given prior g(6), in general the associated posterior is
4'(0) o ¢8P™q(0)
Denoting 1(0) = log p(x | 6) and expanding it around 6 to the second order
10)~1(0)+1"(0)(0-6)+1"(0)(0 - é)2/2
where 6 is the associated MLE which necessarily implies that I’(6) = 0 and
% ift0=pu

é = n 2
Zl(xri;m if0 =0

Hence approximately for large n,

7(0) el(é)q(é)exp{l”(é)(Q -0)°[2).

Note that
2(A - 82
(0)= ) soagilosftilpo)|
1 0=6
and
1 ! 82 P 92 A
7 )_goae 08 lwo)| E[aeae,logf(xmo)] - =-1(0)
1 0=6 0=0
Hence
q*(9)oceXp{—nI(é)(G—é)z/z} (12)

z(6)"

Thus the posterior density will be approximately proportional to A/ (é, ) . For a given 0,

A ) .
6p(xl)6

Thus for n large enough, approximately it is possible to have entropy for posterior density from (8)
and (11) as

1 1
H{p(6|x)} ~log| V2r _ )+—zC logs —logn+C
{p(0]x)} g( z0) 2 g g 2

where C; and C, is just constant. And from (6) it could be heuristically claimed that prior

maximizing expected information should be

4(6) o< exp [~ E[H{6 | x}]} o exp {~Cy log & + log 11 — C) o % (13)



Suppose that prior is continuous, then asymptotically and approximately we should have

4(9)“5

which is the Jeffreys” Prior. More general results is available from Clarke (1994)
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