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1 Introduction

Financial market volatility as the measure of risk plays a vital role both in finance theory and
applications of asset pricing theory in practice (Engle, 2004). Acknowledging the fact that daily
volatilities are time-varying, a strand of literature focuses on modeling daily volatility parametrically
based on daily returns. Examples include the ARCH model of Engle (1982), the GARCH model of
Bollerslev (1986), and the stochastic volatility model of Taylor (1982). As a by-product of volatility
modeling, an estimate of daily volatility can be obtained after the model is estimated.

In a more recent strand of literature, daily realized volatilities (RVs) are used to estimate
daily integrated volatility (IV). Daily RV is a nonparametrical method that is based on intraday
returns, usually 5-minute returns; see Andersen and Bollerslev (1997) and Andersen, Bollerslev,
Christoffersen, and Diebold (2013). By exploiting intraday information, 5-minute returns can
estimate daily volatility more accurately than daily returns. Subsequently, considerable efforts have
been made to find a reasonable model for daily RV, which is then used to forecast future daily RV;
see Andersen, Bollerslev, Diebold, and Ebens (2001); Andersen, Bollerslev, Diebold, and Labys
(2001, 2003); Gatheral, Jaisson, and Rosenbaum (2018); Wang, Xiao, and Yu (2022). Other than
providing a more accurate estimate to IV, RV has been found a wide range of applications. For
example, in an interesting paper, Bollerslev and Zhou (2002) use RVs, obtained from 5-minute
returns, to construct GMM estimators for parameters in several parametric diffusion models.

However, most parametric models for daily volatilities (either RV or spot volatility) are not
suitable for modeling spot volatilities in high frequencies. This is not surprising as spot volatilities
in high frequencies have more complicated behavior than a standard parametric diffusion model can
generate.

Based on 5-minute returns on S&P500 index futures from March 11, 2007, through March 9,
2012, Stroud and Johannes (2014) propose a high-frequency model where the total volatility has a
multiplicative specification, including traditional autoregressive stochastic volatility components,
seasonal components, and announcement components. They introduce a Bayesian method to
estimate parameters in the model and find that all three components are important in the model.

The attempt to build a high-frequency model is important to enhance our understanding of the
intraday behavior in volatility. It has potential important implications for asset pricing, volatility
forecasting, trading, and risk management. However, the criticism to the use of daily returns as
opposed to daily RV also applies here. That is, the use of 5-minute returns is less efficient than that
based on returns in a higher frequency.

Apart from the literature where the quantity of interest is the daily RV, there is another strand
of growing literature that tries to estimate spot volatility from ultra-high frequency data. For
example, in a recent study, Bollerslev, Li, and Liao (2021) establish a new theory for the conduct of
nonparametric inference about the latent spot volatility. Unlike the theories that assume the number
of observations in local estimation blocks go to infinite, the new theory treats the estimation block
size k as fixed. As a result, the estimation error in the spot volatility estimator can be characterized
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by a scaled chi-square random variable. Bollerslev, Li, and Liao (2021) carry out an empirical
application based on the intraday S&P 500 equity index. One of important empirical results suggest
that there exist jumps at FOMC news announcement times. However, this study makes no attempt
to model the dynamics of spot volatility in high frequencies.

In this paper we propose several high-frequency models for the spot volatility based on the theory
of Bollerslev, Li, and Liao (2021). All alternative specifications can be expressed as a nonlinear non-
Gaussian state-space model. In particular, in all the alternative models, the observation equation,
where the fixed-k estimator of spot volatility and the true spot volatility are linked, comes directly
from the theory of Bollerslev, Li, and Liao (2021). The difference of the alternative models lies in
how the dynamics in the latent spot volatility is specified.

We then conduct the Bayesian analysis of all the alternative models using Markov chain Monte
Carlo (MCMC), including obtaining the posterior distributions for each parameter and each latent
spot volatility. In particular, the posterior mean of latent spot volatility is the smoothed estimate
of spot volatility. In addition, we make a Bayesian model comparison of alternative specifications
via the Deviance Information Criterion (DIC).

The rest of the paper is organized as follows. In section 2 relevant preliminary mathematical
concepts are introduced. In section 3 the fixed-k theory of Bollerslev, Li, and Liao (2021) is reviewed
and used to motivate our modelling strategy. Section 4 introduces alternative volatility models.
We also discuss the Bayesian methods for parameter estimation method, volatility extraction, and
model comparison method. In section 5 Monte Carlo experiments are designed to demonstrate that
our proposed Bayesian methods in general work well. Section 6 contains empirical studies. Finally,
section 7 concludes this paper and briefly discusses the agenda for future work. More comprehensive
discussions of technical details about MCMC and other additional results are contained in the
appendix.

2 Mathematical Foundation

Before we introduce our high-frequency volatility models, we first clarify some relevant mathematical
notations and related concepts. For all the following discussions, all random variables are defined
on a fixed (complete) probability space (Ω,F,P). Besides, for two random sequences an and bn, we
write an ≍ bn, if an/C ≤ bn ≤ Can for some finite constant C ≥ 1.

2.1 Basic mathematical results

Definition 1 (Sample Paths) For stochastic process X defined over probability space (Ω,F,P),
for each fixed ω ∈ Ω, the function t↦Xt(ω) that maps from [0,∞) into R is called the sample path
of stochastic process X.

Definition 2 (Hitting Time) Let X be a stochastic process and Λ be Borel set in R. Define

T (ω) = inf{t > 0 ∶Xt ∈ Λ} (1)
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Then, T is called the hitting time of Λ for X.

Definition 3 (Stopping Time) Let (Ft)t∈T be a filtration on Ω, a random variable τ taking values
from T ∪ {∞} is a stopping time for the filtration (Ft)t if event {τ ≤ t} ∈ Ft for every t ∈ T.

Definition 4 (càdlàg and càglàd) A stochastic process is said to be càdlàg if it has sample paths,
which are right continuous with left limits almost surely. Similarly, a stochastic process X is said to
be càglàd if it has sample paths, which are left continuous with right limits almost surely.

Definition 5 Let X be stochastic process and T be a random time. XT is said to be the process
stopped at T if XT

t =Xt∧T . Furthermore, if X is adapted and càdlàg and if T is a stopping time,
then

XT
t =Xt∧T =Xt1{t<T} +XT1{t≥T} (2)

Definition 6 (Local Martingale) A process is said to be local martingale if it is locally right-
continuous martingale. That is, if there is a sequence of stopping times τn almost surely increasing to
infinity and such that the stopped processes 1{τn>t0}X

τn are martingales. Equivalently, 1{τn>t0}X
τn

is integrable and
1{τn>t0}Xτn∧s = E [1{τn>t0}Xτn∧t ∣ Fs] (3)

for all s < t ∈ T, where a ∧ b = min{a, b} and 1{⋅} is an indicator function.

All the above definitions are prepared to define semimartingale, a concept that lays the foundation
for modeling asset price in the continuous-time setting.

Definition 7 (Semimartingale) In general, semimartingale is the stochastic process that can be
decomposed as the sum of local martingale and an adapted finite-variation process. That is, in
general, we have as in Revuz and Yor (2004)

Xt =Mt +At (4)

where Mt is a local martingale and At is an adapted finite-variation process.
With the above mathematical concepts, following Andersen, Bollerslev, Diebold, and Labys

(2001) we adopt the assumption that logarithmic asset prices follow a univariate diffusion. In
particular, for the asset indexed by i, the logarithmic return is modeled as

pi(t) − pi(t − 1) ≡ rk(t) = ∫
t

t−1
µi(s)ds + ∫

t

t−1
σi(s)dW (s), (5)

where W (s) stands for the standard Wiener process and hence, the corresponding volatility measure
is based on the quadratic variation process, denoted by Qvari(t), which yields

Qvari(t) = [pi, pi]t − [pi, pi]t−1 = ∫
t

t−1
σ2i (s)ds. (6)
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This is commonly referred to the integrated volatility in the literature.
According to Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and

Shephard (2002), the integrated volatility over non-trivial time interval, such as a day, is an
important quantity of interest in finance. Many nonparametric estimators for daily IV have been
proposed. Arguably, the most widely used estimator is the daily RV based on 5-minute returns.

With the increasing availability of data sampled at ultra high frequencies, how to estimate
the spot volatility, that is σ2i (t), has drawn a growing interest in the literature. Based on the
mathematical foundation just laid out, we focus on the following model for (log) price process as in
the literature,

Xt =X0 + ∫
t

0
bsds + ∫

t

0
σsdWs + Jt. (7)

This is a continuous-time Itô semimartingale process with drift, diffusion and jump.

3 Fixed-k Estimator of Spot Volatility

When the logarithmic price of an asset is characterized by the continuous-time Itô semimartingale
process, Jacod, Li, and Liao (2020) suggest a way to estimate “spot covariance”, ck(t) = σk(t)σk(t)⊺,
nonparametrically and uniformly as follows

ĉn,j ≡
1

kn,j∆n
∑
i∈In,j

∆n
i X∆n

i X
⊺1{∥∆n

i X∥≤un} (8)

where

∆n : T /n

∆n
i X : Xi∆n −X(i−1)∆n

un : truncation threshold satisfying un ≍∆ϖ
n .

In,j : set collecting indices of consecutive increments in j-th block,

such that {1, . . . , n} = ⋃mn
j=1 In,j and ∣In,j ∣ = kn,j .

Tn,j : Correspondingly, [0, T ] can be dissected as [0, T ] = ⋃mn
j=1 Tn,j

t(n, j) ≡ (minIn,j − 1)∆n,

and

Tn,j ≡
⎧⎪⎪⎨⎪⎪⎩

[t(n, j), t(n, j + 1)) if 1 ≤ j <mn

[t(n,mn), T ] if j =mn.

kn,j denotes the block size. The issue of whether kn,j should be fixed or not is discussed in
Bollerslev, Li, and Liao (2021). While it is commonly assumed kn,j →∞, Bollerslev, Li, and Liao
(2021) advocates a way of making inference for spot volatility with kn,j = k fixed. To see the link
between the setting of Bollerslev, Li, and Liao (2021, henceforth BLL2021QE) and ours, note that
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BLL2021QE set

In,j ≡ {(j − 1)k + 1, . . . , jk}

Tn,j ≡ [(j − 1)k∆n, jk∆n) .

This setting is a special case of ours with kn,j = k.
Essentially (ĉn,j)1≤j≤mn

serves as the functional estimator of (ct)t∈[0,T ]. More specifically,
(ĉn,j)1≤j≤mn

is identified with t-indexed functional estimator (ĉn,t)t∈[0,T ] such that

ĉn,t ≡ ĉn,j for t ∈ Tn,j and j ∈ {1, . . . ,mn}. (9)

The following theorem, which comes from Jacod, Li, and Liao (2020), develops the properties of
the estimator when kn,j →∞.

Theorem 3.1 (Jacod, Li, and Liao (2020)) Under the Assumption 1 and Assumption 2
imposed in Jacod, Li, and Liao (2020) and kn,j ≍∆−ρn uniformly for all j ∈ {1, . . . ,mn} and un ≍∆ϖ

n

such that ρ ∈ (r,1/2) and ϖ ∈ ((1 − ρ/2)/(2 − ρ),1/2). The following statements hold for some
constant ϵ > 0.

(a) With
Un,j ≡ k−1/2n,j ∑

i∈In,j

(∆n
iW∆n

iW
⊺/∆n − Id)

for each 1 ≤ j ≤mn, we have

max
1≤j≤mn

sup
t∈Tn,j

∥k1/2n,j (ĉn,t − ct) − σt(n,j)Un,jσ
⊺
t(n,j)∥ = op (∆

ϵ
n) (10)

(b) If Assumption 2 holds, the following approximation result holds uniformly

max
1≤j≤mn

sup
t∈Tn,j

∣k1/2n,j (f(ĉn,j) − f(ct)) − tr[∂f(ct(n,j))σt(n,j)Un,jσ
⊺
t(n,j)]∣ = op (∆

ϵ
n) . (11)

According to Theorem 9.3.2 of Jacod and Protter (2012), kn,j →∞ and kn,j∆n → 0 are needed to
ensure the consistency of ĉn,t. The required conditions for the consistency is intuitive as they require
the local estimation block contain an increasing number of observations (i.e. kn,j →∞), while at
the same time the size of local estimation block shrinks to zero asymptotically (i.e. kn,j∆n → 0).

Although this double asymptotic scheme theoretically justifies the consistency of the nonparamet-
ric estimation of the spot volatility, it requires a carefully chosen tuning sequence kn,j , as manifest
in the above theorem. The fixed-k theory established in BLL2021QE alleviates the concern about
mimicking the double-asymptotic scheme. We are now in a position to review the fixed-k theory of
BLL2021QE.
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3.1 Fixed k-inference for volatility

BLL2021QE suggests a way to nonparametrically infer latent spot volatility of asset prices charac-
terized by continuous-time Itô semimartingale process. The main contribution of BLL2021QE lies
in that the estimation block size k is fixed.

By setting the estimation block size k fixed, the resulting spot volatility estimator of BLL2021QE
is not consistent, but easy-to-calculate pointwise confidence intervals are available at any given
point in time.

In the univariate case, ct = σ2t is estimated by ĉn,j where, for t ∈ Tn,j and j ∈ {1, . . . ,mn},

ĉn,t ≡ ĉn,j . (12)

The only difference between (12) and (9) is that in (12) a fixed block size kn,j = k is used. Thus,

ĉn,t ≡ ĉn,j =
1

k∆n
∑
i∈In,j

(∆n
i X)

2 1{∣∆n
i X ∣≤un}. (13)

The following main theorem comes from BLL2021QE.

Theorem 3.2 (Bollerslev, Li, and Liao (2021)) Suppose that the Assumption 1 imposed in
BLL2021QE holds, then for any finite subsetM⊆ {1, . . . ,mn}, there exists a collection of independent
random variables (S̄j)j∈M such that for any j ∈ M and t ∈ Tn,j,

ĉn,t

ct
− S̄j = Op (∆(2−r)ϖ∧(1/2)n ) = op(1), (14)

where
M⊆ {1, . . . ,mn} = (k∆n)−1∑

i∈In,j

(Wi∆n −W(i−1)∆n
)2 ,

is a χ̄2
k-distributed random variable. The χ̄2

k refers to the scaled chi-square distribution such that

χ̄2
k ≡ Zk/k, with Zk ∼ χ2

k. (15)

In companion with this definition, we have the scaled inverse-chi-square distribution

χ̄−2k ≡ k/Zk, with Zk ∼ χ2
k. (16)

With k fixed, (14) suggests that ĉn,t

ct
can be approximated by a scaled chi-square distributed

random variable, that is,
ĉn,t

ct

d→ χ̄2
k (17)
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as n→∞ (hence ∆n → 0). Taking the log transformation, we have

ln ĉn,t − ln ct = ln χ̄2
k = lnZk − lnk. (18)

Definition 8 (Log chi-square distribution) Let Zk denotes the log chi-square distribution, that
is

Zk = lnZk = lnχ2
k.

By Lee (2012, page 379), we have the following results for the log chi-square distribution.1

• For the density function, we have2

p (Z) = 1

2k/2Γ(k/2)
exp{1

2
kZ − 1

2
exp (Z)} (−∞ < Z < ∞) .

• For the moment generating function, we have

MGF(t) = 2tΓ (t + (k/2)) /Γ (k/2) .

• For the mean and variance, we have

E [Z] = ln 2 + ψ (k/2) ,

V [Z] = ψ′ (k/2) ,

where
ψ(z) = d

dz
log Γ(z) = Γ′(z)

Γ(z)
.

Remark 3.1 It is well-known that Γ(z + 1) = zΓ(z). If we differentiate both sides of the equation,
we have Γ′(z + 1) = Γ(z) + zΓ′(z). If we then divide both sides of the equation by z and substitute
Γ(z) by Γ(z + 1)/z, we have

ψ(z + 1) = 1

z
+ ψ(z).

This formula suggests that variance of the log chi-square distribution decreases as k increases. In
particular, it can be shown that

d2

dz2
log Γ(z) = d

z
ψ(z) = ψ′(z) =

∞

∑
j=0

1

(z + j)2
.

1 For notational simplicity, we suppress the degrees-of-freedom parameter k in the expressions.
2 It is easy to show that

log p (Z) = −
k

2
log 2 − log Γ (k/2) +

1

2
kZ −

1

2
exp (Z) .

This formula plays an important role our acceptance-rejection sampling algorithm in the context of the algorithm of
Kim, Shephard, and Chib (1998).
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This result has the implication for the choice of the fixed local estimation block size (i.e. k). The
larger the local estimation block size is, the less the variance of the estimated spot volatility. This is
consistent with the usual “bias-variance” trade-off (see Jacod, Li, and Liao, 2020; Bollerslev, Li,
and Liao, 2021). According to the trade-off, a small k results in a more noisy but a less biased
nonparametric estimate of the spot volatility. To make this “bias-variance” trade-off more formally,
Bollerslev, Li, and Liao (2021) show that

∥ĉn,j − c(j−1)k∆n
∥
2
≤K (k−1/2 + (k∆n)κ) (19)

where ĉn,j is the nonparametric estimation of spot volatility over the jth block of length k∆n, ∥⋅∥2 is
the standard L2-norm, and κ is the “smoothness” parameter of the volatility process. (19) directly
implies the “bias-variance” trade-off. In the following discussion, we mostly focus on the case where
the local estimation window size is fixed at k = 5 and the price data is sampled at the frequency of
every one minute within one day. Thus, ∆n = 1/390 ≈ 0.002.

Although unobserved spot volatility is indexed continuously in our model, to facilitate nonpara-
metric estimation of spot volatility, following (12), we assume there exists a surjective function
that maps t ∈ [0, T ] to j ∈ {1, . . . ,mn}.3 To ensure our notations to be consistent wit those in the
literature (such as Chernov, Ronald Gallant, Ghysels, and Tauchen (2003)), we split each day into
M disjoint blocks and the size of each block is fixed as k. If T represents the total number of
investigated trading days, then n = k(MT ) and ∆n = T /n = 1/(kM). In this case, the total number
of blocks for the T trading days is mn =MT . Alternatively, we may have the following representa-
tion. For any t ∈ [0, T ] and r ∈ (0,1] or the corresponding discretized counterpart t○ ∈ [0, T ] and
r○ ∈ {1/M,2/M, . . . ,M/M = 1},

t = ⌊t−⌋ + r,

and
t○ = ⌊t−⌋ + r○,

where ⌊x−⌋ denotes the greatest integer less than x.
Based on the fixed k-inference theory, we set up the following class of state-space model

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln (ĉn,t○) = ln (cn,t○) + ϵt○ , ϵt○ ∼ ln χ̄2
k,

ln (cn,t○) = alternative models.

(20)

(21)

Clearly, the observation equation comes from the fixed-k theory. Since ϵt○ is not a Gaussian variable,
a model in this class is a nonlinear non-Gausian state-space model. Alternative model specifications
will be introduced in the next section.

3 As implied by the fixed-k inference theory, instead of estimating ln cn,t for t ∈ [0, T ], we estimate ln cn,j sampled at
discrete time points with j ∈ {1, . . . ,mn}. In the state-space framework, therefore, we assume t is uniquely mapped to
j ∈ {1, . . . ,mn} where mn is the number of local estimation blocks.
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4 Alternative Model Specifications

We now specify several alternative models for the latent log spot volatility, ln (cn,t○). Following
Stroud and Johannes (2014), in our most general specification, we assume that ln (cn,t○) can be
decomposed into several components:

ln (cn,t○) = µ + ht○ + st○ + at○ , (22)

where ht○ is stochastic volatility process, st○ the seasonal component, at○ the announcement compo-
nent. By shutting down different components in ln (cn,t○) or having different specification for ht○ ,
we end up with alternative models.

4.1 Alternative models

4.1.1 Model 1

If we shut down at○ and st○ in (22) and impose AR(1) structure for ht○ with associated intercept µ,
we have our first model – the benchmark model. That is,

ln (cn,t○) = µ + ht○

ht○ = ϕht○−1/M + et○ , et○ ∼ N (0, σ2e) .

In this model, data is contained in {ln ĉn,t○} with {ht○} being latent variables. The parameters
of the model are {ϕ,µ, σ2e}. For simplicity, we call this benchmark model – Model 1. To ensure
the {ht○} process to be stationary, we assume ϕ ∈ (0,1) and the distribution for the initial state is

ln(cn,0) ∼ N (µ,
σ2e

1 − ϕ2
) . (23)

The above model is different from the log square transformation of the lognormal stochastic
volatility model widely studied in the literature; see, for example Harvey, Ruiz, and Shephard (1994).
The lognormal stochastic volatility model is given by

rt = σexp(ht/2)ϵt, ϵt ∼ N(0,1), (24)

ht = ϕht−1 + σhηt, ηt ∼ N(0,1). (25)

When applying the log square transformation to (24), we have

ln r2t = µ + ht + ln ϵ2t . (26)

Clearly, ln ϵ2t is a log chi-square random variable. This is contrast with the scaled chi-square random
variable used in Model 1.
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For the prior specification, we first introduce the auxiliary parameters ϕ∗ and σ∗2e respectively
as in Kim, Shephard, and Chib (1998),

ϕ = 2ϕ∗ − 1

σe = exp(1
2
lnσ∗2e ) ,

and then use the following priors:

ϕ∗ ∼ Beta (αϕ∗ , βϕ∗)

σ∗2e ∼ I.G. (ασ∗e , βσ∗e )

µ ∼ N (0,100)

where αϕ∗ , βϕ∗ , ασ∗e , βσ∗e are hype-parameters.
MCMC is applied to obtain the correlated random draws from the posterior distributions of

µ, ϕ∗ and ln (σ∗2e ). These draws can be regarded as correlated random draws from the original
parameters. Based on the MCMC draws, we may obtain the posterior mean, quantiles, variance for
each parameter.

4.1.2 Model 2

Model 2 extends the benchmark model by combining the AR(1) structure and a discrete jump
component in ht○ . Specifically, Model 2 is given by

ln (cn,t○) = µ + ht○

ht○ = ϕht○−1/M + et○ + Jt○ηt○ , et○ ∼ N (0, σ2e) , ηt○ ∼ N (µη, σ2η) ,

where Jt○ is a jump indicator, defined by

Jt○ =
⎧⎪⎪⎨⎪⎪⎩

1 with probability κ

0 with probability 1 − κ,

with κ being the jump probability, and ηt○ determines the jump size.
In this model, data is contained in {ln ĉn,t○} with {ht○} ,{Jt○} being latent variables. The

parameters of the model are {ϕ,µ, σ2e , κ, µη, σ2η}.
Following Chib, Nardari, and Shephard (2002), we assume the following conjugate priors for
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parameters in the jump component

κ ∼ Beta (ακ, βκ) ,

µη ∼ N (µ̃η, σ̃2η) ,

σ2η ∼ I.G. (αση , βση) ,

where I.G. denotes the Inverse-Gamma distribution.

4.1.3 Model 3

In Model 3 we add the seasonal component to the benchmark model. The seasonal component for
intraday volatility is used to capture the diurnal U-shaped patterns in high frequency financial data.
There are several methods for modeling diurnal patterns, namely, the Fourier representation and
a deterministic spline. Based on using 5-minute square return, when using a deterministic spline,
Aït-Sahalia and Jacod (2014) and Christensen, Hounyo, and Podolskij (2018) document evidence
of larger fluctuations near the opening and closing of the exchange than around lunch time. The
model is given by

ln (cn,t○) = µ + ht○ + st○ ,

ht○ = ϕht○−1/M + et○ , et○ ∼ N (0, σ2e) ,

st○ ≡ s̃r○ = 12 (1 − b) (r○ − 1

2
)
2

+ b, r○ = t○ − ⌊t−⌋, t ∈ [0, T ].

The quadratic function s̃r = 12(1 − b) (r − 1
2
)2 + b, is the only function within the class f(r) =

c(r − a)2 + b that satisfies (i) ∫
1
0 (c(r − a)

2 + b)dr = 1; (ii) argminr c(r − a)2 + b = 1
2 . The first

condition is imposed for identification. The second condition assumes that the diurnal pattern
reaches the minimum in the middle of a trading day, an empirical regularity that has been found
in the literature.4 There is a restriction in using the quadratic function. That is, it implies a
symmetric diurnal pattern. In a recent study, Christensen, Hounyo, and Podolskij (2018) propose
a nonparametric method to estimate the diurnal patten and find an asymmetric diurnal pattern.
However, our approach can be easily extended to cover more complicated deterministic functions
for diurnal pattern.

In this model, data is contained in {ln ĉn,t○} with {ht○} being latent variables. The parameters
of the model are {ϕ,µ, σ2e , b}.

Since Model 3 and Model 1 share the same AR(1) specification for {ht○}, we use the same
priors on {ϕ,µ, σ2e} as before. For parameter b, we assume a flat prior on [0,1], that is, b ∼ U(0,1).

4 To satisfy the condition that argminr c(r − a)2 + b = 1
2
, we have c > 0 and a = 1

2
. Substituting a = 1

2
into

∫
1

0
(c(r − a)2 + b)dr = 1 yields 1

12
c + b = 1 ⇒ c = 12(1 − b). Thus, the quadratic function is uniquely determined

by single parameter b. The larger the value of b is, the less pronounce the quadratic volatility pattern.
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4.1.4 Model 4

Different from Model 3 that includes the component to capture the diurnal pattern, Model 4
include the component to capture macroeconomic news announcement effects. The motivation for
incorporating announcement effects comes from recent empirical finance sdudies, for instance Lucca
and Moench (2015) and Bernile, Hu, and Tang (2016). The specification of Model 4 is given by

ln (cn,t○) = µ + ht○ + at○ ,

ht○ = ϕht○−1/M + et○ , et○ ∼ N (0, σ2e) ,

at○ =
Q

∑
q=1

L

∑
l=0

1t○qlαql,

where 1t○ql is an indicator for news type q at time t○ with l = 0,1, . . . , L (i.e., 1t○ql = 1 if it is within l
periods after type q announcement made at time t○ − l

M and 0 otherwise), αql is the announcement
effect for news type q at l periods after the announcement.

Again, since the specification for ln ĉn,t○ in Model 4 is the same as that in Model 1, we use the
same priors for parameters {ϕ,µ, σ2e}. Parameters {αql}q=1,...,Q;l=1,...,L characterize announcement
effects. The dimension of these parameters is Q×L, and hence, it increases as Q and/or L increases.
For instance, if L = 5 and Q = 3, we will have L×Q = 15 parameters to determine the announcement
effects. This would impose a great deal of computational challenges to the Bayesian analysis.

To alleviate the computational burden, we assume the announcement effects decay over time
according to the following pattern, αql = α̃q exp{−β̃ql}. This is relatively a parsimonious specification
that significantly reduces the dimension of the parameter space associated with announcement effects.
The imposed decaying structure for the announcement effects is consistent with the intuition and
the empirical evidence in the literature (see Stroud and Johannes, 2014; Lucca and Moench, 2015;
Bernile, Hu, and Tang, 2016). Under this specification, the parameters are collected in {α̃q, β̃q}

Q

q=1.
When L = 5 and Q = 3, the number of parameters in connection to announcement effects reduce
from 15 to 2 ×Q(= 3) = 6. The following priors are used for the new parameters,

α̃q ∼ N (0, σ̃2q) for q = 1,⋯,Q,

β̃q ∼ E (−λ̃q) for q = 1,⋯,Q,

where N (⋅, ⋅) and E (⋅) denote normal distribution and exponential distribution respectively. Accord-
ingly, in this model, data is contained in {ln ĉn,t○} with {ht○} being latent variables. The parameters
of the model are {ϕ,µ, σ2e , α̃q, β̃q}.

4.1.5 Model 5

In Model 5, we consider the model specification by combining all the specifications of Models
1-3. Thus, we have both jumps and diurnal patterns included in the model specifications. In other
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words, Model 5 nests Models 1-3. We summarize the model structure of Model 5 as follows
with detailed explanations for notations kept in the description of Models 1-3.

ln (cn,t○) = µ + ht○ + st○ ,

ht○ = ϕht○−1/M + et○ + Jt○ηt○ , et○ ∼ N (0, σ2e) , ηt○ ∼ N (µη, σ2η) ,

st○ ≡ s̃r○ = 12 (1 − b) (r○ − 1

2
)
2

+ b, r○ = t○ − ⌊t−⌋, t ∈ [0, T ].

The parameters of nested Model 5 are {ϕ,µ, σ2e , κ, µη, σ2η, b}.

4.1.6 Model 6

Recall (22) for our general specified functional form of latent volatility process. By shutting down
(or opening up) different components, we can obtain different model specifications. Models 1-4
discussed in the previous subsections are about adding different components (i.e. jumps, diurnal
components, and announcement effect components) respectively onto the single factor volatility
model, Model 1. Alternatively speaking, built upon the benchmark model specification in Model
1, by combining different specifications in Models 2-4, we can at most obtain C0

3 +C1
3 +C2

3 +C3
3 =

1 + 3 + 3 + 1 = 8 different models. Models 1-4 are about the subset of combinations (i.e. C0
3 +C1

3 ).
We refer to the most comprehensive model specification that includes all the components as Model
6. Thus Model 6 nests all the specifications in Models 1-4. We summarize the model structure
of Model 6 as follows with detailed explanations for notations kept the same as in the description
of Models 1-4.

ln (cn,t○) = µ + ht○ + st○ + at○

ht○ = ϕht○−1/M + et○ + Jt○ηt○ , et○ ∼ N (0, σ2e) , ηt○ ∼ N (µη, σ2η)

st○ ≡ s̃r○ = 12 (1 − b) (r○ − 1

2
)
2

+ b, r○ = t○ − ⌊t−⌋, t ∈ [0, T ].

at○ =
Q

∑
q=1

L

∑
l=0

1t○qlαql,

The parameters of nested Model 6 are {ϕ,µ, σ2e , κ, µη, σ2η, b, α̃q, β̃q}.

4.2 Bayesian analysis

4.2.1 MCMC method to sample from posteriors

With the state-space model summarized in (20) and (21), we design the corresponding Markov Chain
Monte Carlo (MCMC) algorithms to estimate all the parameters involved (especially the latent
variables of our major interests in this setting, the log spot volatility). MCMC as the leading modern
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Bayesian technique is quite suitable for the state-space model with a latent variable structure.
The general idea of the MCMC method can be understood as a combination of various sampling
algorithms such as the Metropolis-Hastings (M-H) algorithm, acceptance-rejection algorithm, Gibbs
sampler, and the substitution sampler (see data augmentation algorithm in Tanner and Wong,
1987) by making draws from conditional distributions associated with the target posterior. It
can be theoretically justified that as long as we can let the Markov chain run long enough, those
draws taken from blocks of conditional distributions constitute the target posterior distribution.
Accordingly, we can use these draws to summarize the posterior mean (or mode) as the estimation
of target parameters and latent variables. Gilks, Richardson, and Spiegelhalter (1995), Bolstad
(2009), and Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013) are all good references for
technical details of MCMC methods. We exploit h to denote the sequence of ht○ , J to denote all
the jump indicators, and η to denote all the jump sizes. For the sake of description simplicity, we
let h̃ = h + µ. Meanwhile, we use y to denote the sequence of log transformation of nonparametric
estimator of volatility, that is the sequence of ln (ĉn,t○). We summarize the main MCMC sampling
steps for each model in this section while leaving the technical details in the appendix A.

• Model 1

(1) Initialize {h, ϕ, µ, σ2e}.

(2) Sample h̃ ∣ ϕ,µ, σ2e ,y.

(3) Sample {ϕ,µ, σ2e} ∣ h̃.

(4) Go to (2).

• Model 2

(1) Initialize {h,J ,η, ϕ, µ, σ2e , κ, µη, σ2η}.

(2) Sample h̃ ∣ J ,η, ϕ, µ, σ2e , κ, µη, σ2η,y.

(3) Sample {ϕ,µ, σ2e} ∣ h̃,J ,η.

(4) Sample J ∣ h, ϕ, µ, σ2e , κ, µη, σ2η.

(5) Sample η ∣ h,J , ϕ, µ, σ2e , µη, σ2η.

(6) Sample {κ,µη, σ2η} ∣ J ,η.

(7) Go to (2).

In step (2) above, we need {κ,µη, σ2η} to obtain the initial condition of h. Detailed sampling
steps for sampling latent components such as h, J , η are covered in the appendix.

• Model 3

(1) Initialize {h, ϕ, µ, σ2e , b}.

(2) Sample h̃ ∣ ϕ,µ, σ2e , b,y.
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(3) Sample {ϕ,µ, σ2e} ∣ h̃.

(4) Sample b ∣ h, µ,y.

(5) Go to (2).

In step (4) above, we insert one M-H algorithm for sampling b.

• Model 4

(1) Initialize {h, ϕ, µ, σ2e , α̃q, β̃q}.

(2) Sample h̃ ∣ ϕ,µ, σ2e , α̃q, β̃q,y.

(3) Sample {ϕ,µ, σ2e} ∣ h̃.

(4) Sample {α̃q, β̃q} ∣ h, µ,y.

(5) Go to (2).

In step (4) above, we insert one M-H algorithm for sampling {α̃q, β̃q}.

• Model 5
This is a model nesting all the specifications from Models 1-3. The corresponding MCMC
loop is summarized as follows

(1) Initialize {h,J ,η, ϕ, µ, σ2e , κ, µη, σ2η, b}.

(2) Sample h̃ ∣ J ,η, ϕ, µ, σ2e , κ, µη, σ2η, b,y.

(3) Sample {ϕ,µ, σ2e} ∣ h̃,J ,η.

(4) Sample J ∣ h, ϕ, µ, σ2e , κ, µη, σ2η.

(5) Sample η ∣ h,J , ϕ, µ, σ2e , µη, σ2η.

(6) Sample {κ,µη, σ2η} ∣ J ,η.

(7) Sample b ∣ h, µ,y.

(8) Go to (2).

• Model 6
This is the largest model nesting all the components that are expected to obtain from MCMC.
The MCMC loop is summarized as follows,

(1) Initialize {h,J ,η, ϕ, µ, σ2e , κ, µη, σ2η, b, α̃q, β̃q}.

(2) Sample h̃ ∣ J ,η, ϕ, µ, σ2e , κ, µη, σ2η, b, α̃q, β̃q,y.

(3) Sample {ϕ,µ, σ2e} ∣ h̃,J ,η.

(4) Sample J ∣ h, ϕ, µ, σ2e , κ, µη, σ2η.

(5) Sample η ∣ h,J , ϕ, µ, σ2e , µη, σ2η.

(6) Sample {κ,µη, σ2η} ∣ J ,η.
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(7) Sample {b, α̃q, β̃q} ∣ h, µ,y.

(8) Go to (2).

Remark 4.1 To demonstrate the ideas of how we sample the latent volatility process, we use t
as the discrete timing index. Besides, given that ĉn,t as the nonparametric estimation of volatility
is always a positive number, we emphasize it using square by rewriting the log transformation
ln (ĉn,t) + lnk as ln y2t + lnk and for the ease of notation as well. We use h̃t to denote the generally
unobserved components at t temporarily within this remark. Alternatively speaking, h̃t refers to the
latent volatility process in the following discussion. As we have discussed in section 3, this fixed-k
inference theory suggests that there is a random variable Z following log chi-square distribution that
characterizes the gap between ln y2t + lnk and h̃t. Consequently, we have

log p(Z) = −k
2
log 2 − log (Γ(k

2
)) + k

2
(ln y2t + lnk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
const

−k
2
h̃t −

ky2t
2

exp{−h̃t}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

log f∗(yt ∣ h̃t)

. (27)

We use “const” to emphasize that the associated term is constant from posterior perspective. As in
Kim, Shephard, and Chib (1998), we note that exp (−h̃t) is a convex function that can be bounded
by a function linear in ht. We this fact to derive following inequality for constructing proposal
distribution used in M-H algorithm.

log f∗ (yt ∣ h̃t) = −
k

2
h̃t −

ky2t
2
{exp(−h̃t)}

⩽ −k
2
h̃t −

ky2t
2
{exp(−h̃∗t )(1 + h̃∗t ) − h̃t exp(−h̃∗t )}

= log g∗ (yt, h̃t, h̃∗t )

Hence,
f (h̃t ∣ yt, h̃/t) ∝ f (h̃t ∣ h̃/t) f∗ (yt ∣ h̃t) ⩽ fN (h̃t ∣ h̃∗t , v2) g∗ (yt, h̃t, h̃∗t ) (28)

Note that terms collected in the exponential component (28) are of standard quadratic form in h̃t,
thus we can show that fN (h̃t ∣ h̃∗t , v2) g∗ (yt, h̃t, h̃∗t ) is proportional to Gaussian density functional
form fN (h̃t ∣ µt, v2). Specifically, for R.H.S. of (28), we have

fN (h̃t ∣ h̃∗t , v2) g∗ (yt, h̃t, h̃∗t ) =
1√
2πv

exp{− 1

2v2
(h̃t − h̃∗t )

2}

× exp{(ky
2
t

2
exp (−h̃∗t ) −

k

2
) h̃t −

ky2t
2

exp(−h̃∗t )(1 + h̃∗t )}

If we rewrite and focus on the terms that correspond to h̃t in the exponential components of the
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expression above, we can derive following normal proposal distribution,

− 1

2v2
(h̃t − h̃∗t )

2 + (ky
2
t

2
exp (−h̃∗t ) −

k

2
) h̃t = −

1

2v2
h̃2t + [(

ky2t
2

exp (−h̃∗t ) −
k

2
) + 2 ⋅ 1

2v2
h̃∗t ] h̃t −

1

2v2
h̃∗2t

= − 1

2v2
{h̃2t − [2v2 (

ky2t
2

exp (−h̃∗t ) −
k

2
) + 2h̃∗t ] h̃t} −

1

2v2
h̃∗2t

= − 1

2v2
{h̃2t − 2 ⋅ [

v2

2
(ky2t exp (−h̃∗t ) − k) + h̃∗t ] h̃t} −

1

2v2
h̃∗2t

= − 1

2v2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̃t − [
v2

2
(ky2t exp (−h̃∗t ) − k) + h̃∗t ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ut

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

−[v
2

2
(ky2t exp (−h̃∗t ) − k) + h̃∗t ]

2

− 1

2v2
h̃∗2t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
const

Hence we use fN (h̃t ∣ ut, v2) as the proposal distribution in Metropolis-Hastings sampling procedure
to sample from f (h̃t ∣ y2t , h̃/t). Specifically, Metropolis-Hastings is applied in general for the j-th
step of Gibbs Sampling as follows,

(1) Generate x ∼ N(ut, v2) and u ∼ U(0,1)

(2) Let 5

α =min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1,

fN(x; h̃∗t , v2t )flnχ2
k
((ln y2t + lnk);x)

fN (h̃(j−1)t ; h̃∗t , v
2
t ) flnχ2

k
((ln y2t + lnk); h̃

(j−1)
t )

×
fN (h̃(j−1)t ;ut, v

2
t )

fN (x;ut, v2t )

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(3) If u < α, h̃(j)t = x, else, h̃(j)t = h̃
(j−1)
t .

4.2.2 Deviance information criterion for model comparison

In this section, we focus on discussing how to compare alternative models when MCMC output is
ready from each candidate model in the context of Models 1-4.

Deviance Information Criterion (DIC), proposed and well-discussed in Spiegelhalter, Best, Carlin,
and van der Linde (2002, 2014)), is a popular method for model selection when MCMC output is

5 By construction, we are using proposal distribution taking exactly the same shape as target distribution.
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ready. There are a few nice features about DIC. First, DIC applies to a wide range of statistical
models. Second, it does not suffer from Jeffreys-Lindley-Barlett’s paradox. Third, it can be obtained
even under improper priors. Finally, Li, Yu, and Zeng (2021) justify DIC by showing that DIC is an
asymptotically unbiased estimator of the Kullback-Leibler divergence between the data generating
process and the plug-in predictive distribution. DIC in general is given as follows

DIC =D (ϑ̄) + 2PD (29)

where

D(ϑ) = −2 lnp (y ∣ ϑ)

PD = −2∫ [lnp(y ∣ ϑ) − lnp(y ∣ ϑ̄)]p(ϑ ∣ y)dϑ.

ϑ̄ refers to the posterior mean of parameter ϑ and y generically denotes observable data. Specifically,
for the DIC definition in (29), D(ϑ̄) as the product of a negative number (−2) and log-observed-data
likelihood evaluated at the posterior mean of parameters could be interpreted as the measure
of model fit and hence it is expected to be minimized for fitting data purpose. While PD as
the second term in (29) could be interpreted as the product of a negative number (−2) and the
posterior expected deviance between log-observed-data likelihood evaluated at different parameter
values over parameter space and log-observed-data likelihood evaluated at the posterior mean. The
corresponding expectation is taken with respect to posterior distribution p (ϑ ∣ y). Since PD is
increasing with lnp (y ∣ ϑ̄), there exists trade-off between these two terms D (ϑ̄) and PD, therefore
the objective to minimize DIC is reconciled with the goal of achieving balance between “model fit”
and “model complexity”. This also corresponds to the opinion that DIC can be understood as the
Bayesian version of AIC. Computing DIC using conditional likelihood is straightforward based on
posterior sampling from MCMC: (i) for D (ϑ̄), we just make D (ϑ) evaluated at posterior mean ϑ̄;
(ii) and pD is calculated using posterior sample mean from MCMC. We also make a discussion using
particle filter for approximating marginal likelihood (or the observed-data likelihood) in appendix B.

5 Monte Carlo Experiments

In this section, we conduct several Monte Carlo experiments to check the performance of the proposed
Bayesian method in estimating parameters, extracting volatility estimates, and in comparing
alternative models. Several data generation processes, which match with different alternative model
specifications in the previous section, have been used to simulate data.
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5.1 Experiment 1

In the first experiment, we simulate data according to,

dXt = exp (ht/2)dWt

dht = κh (µh − ht)dt + σhdBt

E [WtBt] = ρ = 0

Specifically we simulate discrete data by setting dt ∶= ∆n
i = 1/390, which implies that price data

is sampled every one minute, leading to 6.5 × 60 = 390 returns as we assume there are 6.5 trading
hours. Parameter specification for this experiment is as follows: κh = 0.2, µh = −5, ρ = 0, σh = 0.4.
For notational simplicity, we write ln(cn,t) as ht. When extracting latent volatility, we focus our
attention to the one-month interval (i.e., T = 22, assuming that there are 22 trading days within
one month). In total we have n = 22 × 390 = 8580 returns.6

First, to check the performance of the Bayesian method in estimating model parameters, we
report the posterior means, posterior standard errors for all parameters. The corresponding results
are summarized in the following figures with the vertical red dashed lines indicating the location of
posterior means.

[Place Figure 1 about here]

Remark 5.1 (From DGP Dynamic to Block Dynamic) Recall that in general data is gener-
ated from the following dynamic system, if we treat dht = ht+1 − ht of the second equation above, we
can rewrite the second equation characterizing latent spot volatility dynamics as follows

ht+1 − ht = κh (µh − ht)dt + σhdBt

⇔

(ht+1 − µh) − (ht − µh) = −κhdt(ht − µh) + σhdBt

⇒

ht+1 − µh = (1 − κhdt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ϕh

(ht − µh) + σhdBt
´¹¹¹¹¹¸¹¹¹¹¹¶
εt+1

6 We simulate price-level data using the described DGP each for a specific experiment. It works fine for different
replicate experiments. Besides, we simulate price-level data by only accounting for diffusion process. This DGP
scheme does not distort our general target since our approach relies on the distribution of the difference between
the log fixed-k estimator of spot volatility and the true unobserved latent volatility. The derived distribution in
BLL2021QE generally applies to continuous Itô semimartingale and therefore any fixed-k estimator of volatility
associated price-level data generated from continuous Itô semimartingale does not affect the nonlinear non-Gaussian
state-space model we establish. Similar DGP scheme has also been used in literature such as Xiu (2010).
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Given the property of Brownian motion, σhdBt ∼ N (0, σ2hdt). Data is generated from this continuous
setting. But to apply nonparametric estimation of spot volatility in our established framework, we
have to select k consecutive time intervals (dt ≡∆n

i ) to construct “local estimation window”. This
implies that we have to move from “observation” dynamics to “block” dynamics. If we simulate data
from system given above, we are modeling following dynamics (let h̃̃t = ht − µh denote the demeaned
latent spot volatility)

h̃̃t+k = ϕhh̃̃t+k−1 + εt+k

= ϕh (ϕhh̃̃t+k−2 + εt+k−1) + εt+k

= ϕh(ϕh(ϕhh̃̃t+k−3 + εt+k−2) + εt+k−1) + εt+k

⋯

= ϕkhh̃̃t + (ϕ
k
hεt +⋯ + εt+k)

Thus the “block” dynamics should be given as follows

h̃̃j+1 = ϕkhh̃̃j + ej+1. (30)

This could be interpreted as that h̃̃j is regarded as constant spot volatility within the j-th block
constructed by k intervals. Variance of ej+1 = ϕkhεt +⋯ + εt+k is given as follows

σ2e =
σ2hdt(1 − ϕ

2(k+1)
h )

1 − ϕ2h
.

For instance, if dt ∶= ∆n
i = 1/390, σh = 0.4, k = 5, and κh = 0.2, then ϕh = 1 − κhdt ≈ 0.9995,

ϕkh ≈ 0.9974 and ¿
ÁÁÁÀσ2hdt(1 − ϕ

2(k+1)
h )

1 − ϕ2h
≈ 0.0496

These quantities should be reasonably compared with posterior means summarized from MCMC
outputs. We extend discussions here in the appendix using another example.

Second, to check the performance of the smoothing and filtering methods in extracting latent
volatility, we plot the simulated (true) volatility, smoothed volatility and nonparametric estimation
of volatility in Figures:

[Place Figure 2 about here]

[Place Figure 3 about here]

For the results demonstrated above, the local estimation window size is fixed at k = 5. In this
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regard, we treat the unobserved latent volatility as constant every 5 minutes, and accordingly for
this fixe-k scheme we have M = 390/5 = 78 local estimation blocks each day and 22 × 78 = 1716 local
estimation blocks for 22 days.

5.2 Experiment 2

In this experiment, we simulate data according to,

dXt = exp (h̃t/2)dWt

h̃t = µh + ht

dht = −κhhtdt + σhdBt + 1{t=t○}Jtηt

E [WtBt] = ρ = 0

Jt ∼ Bernoulli(κ)

ηt ∼ N (µη, σ2η)

Specifically we simulate discrete data by setting dt ∶=∆n
i = 1/390, which implies that price data is

sampled every one minute, leading to 6.5×60 = 390 returns as we assume there are 6.5 trading hours.
Parameter specification for this experiment is as follows: κh = 0.2, µh = −5, ρ = 0, σh = 0.4, κ = 0.0025,
µη = 0.8, ση = 1.2. For notational simplicity, we write ln(cn,t) as ht. κ = 0.0025 ≈ 1/(78× 5) suggests
that we assume approximately there is one jump each week. When extracting latent volatility, we
focus our attention to the one-month interval (i.e., T = 22, assuming that there are 22 trading days
within one month). In toal we have n = 22 × 390 = 8580 returns. Besides, the jump component
is incorporated in the transition dynamics of the volatility process using 1{t=t○} to ensure that
latent spot volatility transition dynamics in DGP are reconciled with corresponding specifications in
Model 2. In other words, we only consider jumps that happen at the end of each local estimation
block.

First, to check the performance of the Bayesian method in estimating model parameters, we
report the posterior means, posterior standard errors for all parameters. The corresponding results
are summarized in the following figures with the vertical red dashed lines indicating the location of
posterior means.

[Place Figure 4 about here]

Second, to check the performance of the smoothing and filtering methods in extracting latent
volatility, we plot the simulated (true) volatility, smoothed volatility and nonparametric estimation
of volatility in Figures:

[Place Figure 5 about here]
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5.3 Experiment 3

In this experiment, we simulate data according to,

dXt = exp (h̃t/2)dWt

h̃t = µh + ht + st

dht = −κhhtdt + σhdBt

E [WtBt] = ρ = 0

st = 12(1 − b) (t − ⌊t−⌋ − 1

2
)
2

+ b

where st takes the quadratic functional form as described for Model 3, thus

st = 12(1 − b) (t − ⌊t−⌋ −
1

2
)
2

+ b.

All the parameters except for the parameter that specifies intraday volatility pattern inherit from
Experiment 1. We specify b for different cases: one for b = 0.4, which represents the case when
daily volatility exhibits relatively strong diurnal U-shaped patterns; while the other for b = 0.8,
which represents the case when daily volatility exhibits relatively weak diurnal U-shaped patterns.

First, to check the performance of the Bayesian method in estimating model parameters, we
report the posterior means, posterior standard errors for all parameters. The corresponding results
are summarized in the following figures with the vertical red dashed lines indicating the location of
posterior means.

[Place Figure 6 about here]

[Place Figure 7 about here]

Second, to check the performance of the smoothing and filtering methods in extracting latent
volatility, we plot the simulated (true) volatility, smoothed volatility and nonparametric estimation
of volatility in Figures:

[Place Figure 8 about here]
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5.4 Experiment 4

In this experiment, we simulate data according to,

dXt = exp (h̃t/2)dWt

h̃t = µh + ht + at○

dht = −κhhtdt + σhdBt

E [WtBt] = ρ = 0

at○ =
Q

∑
q=1

L

∑
l=0

1t○qlαql

αql = α̃q exp{−β̃ql}

where at○ inherits the corresponding specification directly from Model 4 such that

at○ =
Q

∑
q=1

L

∑
l=0

1t○qlαql

where 1t○ql is indicator for news type q at t○ with l = 0,1, . . . , L (i.e., 1t○ql = 1 if it is l periods after
type q announcement made at time t○ − l

M and 0 otherwise). We currently focus on the single-type
announcement effect, thus Q = 1 in this experiment. Besides, L is the parameter capturing the
longest length of periods for which the announcement effect survives once it is made. L is set equal
to 5 in this experiment. To simulate announcement indicators, we assume that the announcement
happens at a rate approximately equal to 0.004 ≈ 1/(78 × 3). We specify the announcement effects
by setting α̃q = 0.8, β̃q = 0.1.

First, to check the performance of the Bayesian method in estimating model parameters, we
report the posterior means, posterior standard errors for all parameters. The corresponding results
are summarized in the following figures with the vertical red dashed lines indicating the location of
posterior means.

[Place Figure 9 about here]

Second, to check the performance of the smoothing and filtering methods in extracting latent
volatility, we plot the simulated (true) volatility, smoothed volatility and nonparametric estimation
volatility in Figures:

[Place Figure 10 about here]

Remark 5.2 (Comparison of jumps and announcement impulse) For the data generating
process of Experiment 3 described above associated with Model 3 and the data generating process
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of Experiment 4 associated with Experiment 4, we exploit notation 1{t=t○}Jtηt and at○ to capture
announcement shocks and jump shocks in this continuous-time setting respectively. By writing
at○ in equation ht = µ + ht + st + at○, in which for any t ∈ (⌊t−⌋, t○], at = at○, we make data
generated in this continuous-time scheme reconciled with model specified as in (22). By contrast, the
introduced indicator function 1{t=t○} selects jump shocks that happen between two consecutive local
estimation blocks so that to make the simulated jump shocks reconciled with model specification as in
ht○ = ϕht○−1/M + et○ + Jt○ηt○, since jump shocks are implicitly assumed to be measured at the same
frequency with the local estimation block based on this equation that establishes a model incorporating
jump shocks.

5.5 Experiment 5

In this experiment, we simulate data by accommodating all the components in Experiments 1-3.

dXt = exp (h̃t/2)dWt

h̃t = µh + ht + st

dht = −κhhtdt + σhdBt + 1{t=t○}Jtηt

E [WtBt] = ρ = 0

Jt ∼ Bernoulli(κ)

ηt ∼ N (µη, σ2η)

st = 12(1 − b) (t − ⌊t−⌋ − 1

2
)
2

+ b

All the corresponding notations inherit directly those in Experiments 1-3 and the values assigned
to these parameters as well.

First, to check the performance of the Bayesian method in estimating model parameters, we
report the posterior means, posterior standard errors for all parameters. The corresponding results
are summarized in the following figures with the vertical red dashed lines indicating the location of
posterior means.

[Place Figure 11 about here]

Second, to check the performance of the smoothing and filtering methods in extracting latent
volatility, we plot the simulated (true) volatility, smoothed volatility and nonparametric estimation
of volatility in Figures:

[Place Figure 12 about here]
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5.6 Experiment 6

In this experiment, we simulate data by accommodating all the components in Experiments 1-4
via following data generating process

dXt = exp (h̃t/2)dWt

h̃t = µh + ht + st + at○

dht = −κhhtdt + σhdBt + 1{t=t○}Jtηt

at○ =
Q

∑
q=1

L

∑
l=0

1t○qlαql

αql = α̃q exp{−β̃ql}

All the corresponding notations inherit directly those in Experiments 1-4 and the values assigned
to these parameters as well.

First, to check the performance of the Bayesian method in estimating model parameters, we
report the posterior means, posterior standard errors for all parameters. The corresponding results
are summarized in the following figures with the vertical red dashed lines indicating the location of
posterior means.

[Place Figure 13 about here]

Second, to check the performance of the smoothing and filtering methods in extracting latent
volatility, we plot the simulated (true) volatility, smoothed volatility and nonparametric estimation
of volatility in Figures:

[Place Figure 14 about here]

5.7 Results and discussions on model comparison

For all the experiments described in the previous part, we summarize corresponding results in
the following table, where Model i=1,2,3,4 and DGP i=1,2,3,4 refer to model specifications
and data generating processes discussed in the previous subsections respectively. For each data
generating process DGP i=1,2,3,4, DIC based on conditional likelihood is reported along with
the decomposed components in (29). In general, the model with a relatively smaller DIC should be
preferred to the model with a relatively larger DIC (highlighted in bold). It is possible to see from
this Monte Carlo experiment that standard deviance information criterion can in general select the
alternative model associated with the true data generating process. Since for DGP i=1,2,3, it
is by design that there is no observed announcement indicators, hence we do not compare
Model 4 with Model i=1,2,3 for DGP i=1,2,3.
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[Place Table 1 about here]

Remark 5.3 The reason why Model 1 and Model 3 have much larger DIC when the true data is
generated from stochastic volatility process with jumps (DGP 2) is that if there indeed exists “jump”
components in the dynamic transition scheme (DGP 2) at relatively high frequency (for instance, κ
specified in this experiment as κ ≈ 0.01 suggests that approximately on average we have one volatility
jump each day), model specifications without accommodating these potential “jumps” usually feature
“poor” model fitting. We leave more discussions on this issue in the appendix.

6 Empirical Study

This section discusses the empirical applications of our proposed estimation method of spot volatility.
We see from discussions in extant literature that one prominent feature associated with spot
volatility estimation by fixing local estimation window size is the “noise” introduced, which is also
one motivating incentive for our proposed methodology using MCMC techniques to smooth out
those “noises” of nonparametric estimation of spot volatility with local estimation-window size
fixed. We first demonstrate some applications of the proposed methodology in tracking volatilities
associated with individual assets. Then we discuss a broader application for quantifying private
information closely connected with return volatility in high frequency in the studies of financial
microstructure.

Data used for our empirical study is collected mainly from two sources. For the data corresponding
to the U.S. equity market, we mainly collect it from the NYSE TAQ database (Trade and Quote
database).7 We follow the procedure suggested in Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2009), which has been encompassed in highfrequency package maintained at CRAN (Boudt, Kleen,
and Sjørup, 2021). This procedure aims to eliminate non-zero trades and filter for valid sales
conditions.8 Aside from that, we merge trade entries that have the same timestamp into a single
one. Thus, if there are multiple observations available for a specific timestamp, we take the median
of these multiple observations as the corresponding observation associated with that timestamp. For
the Chinese stock market, we mainly use one-minute price-level data of the CSI 300 index futures.

7 This database contains intraday transactions data (trades and quotes). Generally there are 3 kinds of data products:
Trade & Quote Daily Product (09/10/2003-present), Trade & Quote Monthly Product (01/01/1993-
12/31/2014) and NYSE Reg Sho Data (01/01/2005-07/31/2007). In general, The TAQ Daily and Monthly data
products are nearly identical whereas the key difference arises from that Monthly Data Product is delivered a whole
month at a time, typically 60-90 days after the last trading day of the month. Daily Data Product is delivered
one day at a time, hours after trading stops, and is available on WRDS the next day. We retain our focus on using
Trade & Quote Daily Product as it is actively maintained and is of relatively higher quality in the sense that
sampling intervals are more refined for the Trade & Quote Daily Product such that timestamps are provided at
milliseconds (10−3 secs) granularity through March 2015, and in microseconds (10−6 secs) starting in April 2015.

8 For more about sales conditions, readers may refer to NYSE online documentation about daily TAQ trade files at https:
//www.nyse.com/publicdocs/nyse/data/Daily_TAQ_Client_Spec_v3.3.pdf. By implementing this procedure, we
essentially retain our focus on stocks exchanged in a single exchange market (for instance, T/Q refers to the NASDAQ
exchange market).
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6.1 Extracting spot volatility for individual asset

For the sake of mitigating the effect of microstructure “noise”, it is a standard thumb rule in
literature to have price data sampled at one-minute sampling frequency, (see Zhang, Mykland,
and Aït-Sahalia, 2005). For this one-minute sampling scheme, we calculate the corresponding
one-minute return within trading hours each day from 9:30 to 16:00 by taking the close-open return
(i.e. close-open log price difference) as the return for the interval from 9:30 to 9:31 and close-close
returns (i.e. close-close log price difference) as the returns for the following sampling intervals up
till to 16:00, which is usually the ending trading hours each day.9 More specifically, we should
expect 391 observed data at price level and accordingly 6.5× 60 = 390 calculated one-minute returns
each day. We use two market indices (S&P 500 index ETF representing the U.S. market and CSI
300 index futures representing the Chinese market respectively) and one individual stock (Apple
Inc.) as the data source. We demonstrate both the extracted volatility (red dashed line) and the
corresponding nonparametric estimation of volatility (blue solid line) with local estimation block
size fixed (i.e. fixed k = 5, every 5-minutes) as follows,

S&P 500 index ETF from TAQ in November 2015

[Place Figure 15 about here]

Apple Inc. Stock Price in August 2017

[Place Figure 16 about here]

CSI 300 Index futures in January 2020

[Place Figure 17 about here]

CSI 300 Index futures in August 2020

[Place Figure 18 about here]

For each index, the extracted volatility is based on Model 5, the nested model including all
the specifications of Models 1-3. We also make a model comparison across Models 1-3 based
on DIC to check whether we need to extend the benchmark model specification (Model 1) to
incorporate either jumps in the volatility dynamics or the diurnal pattern of the latent volatility
process. Specifically for each year (S&P 500 index ETF in 2015, Apple Inc. Stock Price in 2017,
and CSI 300 Index futures in 2020) and each month we apply our proposed modeling framework
and methodology to extract volatility based on model specifications corresponding to Model 1,
Model 2, and Model 3. Results are summarized in Table 2, Table 3, and Table 4 respectively.

9 Timing scheme for trading hours corresponding to CSI 300 index futures. From 2010 to 2015, we have pirce-level data
sampled at one-minute frequency from 9:15 to 15:15 each day; while from 2016 to 2021, we have data sampled at
one-minute frequency from 9:30 to 15:00 each day.
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[Place Table 2 about here]

[Place Table 3 about here]

[Place Table 4 about here]

These results suggest that for most cases, we need to allow for the jump specifications in
modeling the latent volatility process and that is why we apply Model 5 that nests both the jump
specifications and intraday diurnal pattern specification for extracting volatility. We also summarize
the posterior mean and standard deviations of parameter based on MCMC draws as follows. The
associated diagnostic check using MCMC trace plot is summarized in the appendix C.3.

[Place Table 5 about here]

[Place Table 6 about here]

[Place Table 7 about here]

By comparing the posterior mean of b summarized in the last column of Table 5, Table 6, and
Table 7, we find that: the volatility of individual stock return exhibits a relatively stronger (lower
b) diurnal pattern while the volatility associated with market indices exhibits a relatively weaker
(higher b) diurnal pattern in the corresponding periods.

6.2 Spot volatility, liquidity, and strategic value of information

In this section, we specifically focus on one application of our proposed methodology for extracting
volatility to study the financial market microstructure, thus the value of information in strategic
trading.

6.2.1 Value of information in continuous-time setting

Volatility plays a vital role in modern financial market microstructure studies since essentially
speaking, all the studies about the financial market structure are about recovering insiders’ private
trading information in comparison to relatively uninformed liquidity traders. In other words, the
central questions of paramount importance are what the value of asset-specific information is to
a strategic trader and how to practically quantify such a kind of value, which is also the amount
investors would pay for information. One motive intuition for quantifying the value of information
is to use two components: (i) the extent to which specific information can offer speculator the
reduction in uncertainty; (ii) liquidity associated with assets for which the acquired information
can be used to trade quickly without generating adverse effects on the assets’ prices. Inspired by

28



Grossman and Stiglitz (1980) and the subsequent studies in Kyle (1985) and Back (1992), this
intuition has been justified using the ratio of uncertainty about the asset’s fundamentals and the
asset’s illiquidity measure. Given the recent finding in empirical literature (Collin-Dufresne and
Fos, 2015; Kacperczyk and Pagnotta, 2019; Akey, Grégoire, and Martineau, 2022) that private
information is hardly reflected by equity prices, Kadan and Manela (2021) extend the modeling
framework of Kyle (1985) and Back (1992) (comprehensively summarized in Back (2017)) and
proposes that in equilibrium the ex-ante dollar expected profits of informed trader over a specific
interval indexed from 0 to 1 can serve as the measure of value of information to strategic trader,
which is given by 10

Ω = σ
2
v

λ
P0, (31)

where σ2v characterizes volatility associated with private information of informed traders and P0

refers to the initial price of the specific asset over this timing interval. Besides, we follow the
convention in literature as in Back (2017) assuming that private information is denoted by ṽ and
follows log-normal distribution such that ln ṽ ∼ N (µ,σ2v). λ in (31) is widely known as Kyle’s
Lambda, initially proposed in Kyle (1985), as the measure of sensitivity of assets’ return to share
order flow (Lee and Ready, 1991; Ellis, Michaely, and O’Hara, 2000; Holden and Jacobsen, 2014).
Kyle’s lambda serves as one alternative measure reflecting financial market turbulence, which is
usually high during periods in which the whole financial market is exposed to a systematic crisis
such as the 2008 financial depression and more recent years Covid-19 global pandemic crisis. As
we can see from (31) that σ2v as the major component characterizing the value of information to
strategic trader also measures the magnitude of reduction in uncertainty that speculator would
have if had acquired corresponding information. More importantly, as we will see in the following
discussion that although σ2v is originally the measure of uncertainty associated with information
(for instance, at price level), it can be directly used as the measure of volatility associated with the
logarithmic return of asset.

In standard literature corresponding to financial market microstructure, it is usually assumed
that observed cumulative share orders in the continuous-time modeling framework, denoted by Yt,
can be decomposed into cumulative share orders of informed trader, denoted by Xt; and cumulative
share orders of uninformed trader, denoted by Zt, thus

Yt =Xt +Zt. (32)

Dynamics specified for is directly characterized via Brownian motion as dZt = σzdBt. Then results
contained in theorem 3 and example 2 in Back (1992) and Back (2017) suggest that in equilibrium

dPt

Pt
= λdYt and dXt =

ln v̄−µ
λ − Yt
1 − t

dt, v̄ = E [ṽ] , (33)

10 Alternatively, it is possible to interpret 0 as the starting point of specific interval while 1 as the ending point of specific
interval.
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where Pt refers to price process associated with target asset in equilibrium. Then it is straightforward
to see that

dPt

Pt
= λdYt

= λdXt + λdZt

= λdXt +
σv
σz
σzdBt

= λ
ln ṽ−µ

λ − Yt
1 − t

dt + σvdBt,

which yields one important implication for the empirical strategy that σ2v as the measure of volatility
associated with private information can be used as the proxy for volatility associated with logarithmic
return. Specifically, for two consecutive asset prices Pτi and Pτi−1 , by applying log-linearization we
have

ri ∶= ln(
Pτi

Pτi−1
) ≈ Pτi − Pτi−1

Pτi−1
,

where the R.H.S. of the equation above can be regarded as the discretized approximation of dPt

Pt
.

6.2.2 Estimating value of information using spot volatility

In this section we discuss empirical strategies using spot volatility to estimate value of information.
The general idea is simple: suppose we have a specific way to estimate Kyles lambda, denoted by
λ̂, then we can construct a spot information value associated with informed traders by using our
proposed spot volatility estimation as the proxy of asset return volatility over each tiny interval
using Bayesian techniques based upon the fixed-k inference theory. Thus

Ω̂ = σ̂
2
v

λ̂
P0. (34)

This will be a more desirable method in comparison to the widely adopted alternative using
integrated volatility (i.e. annualized realized volatility) instead since the model developed in Back
(1992) is naturally a continuous-time extension of the discrete-time model of Kyle (1985) and
accordingly spot volatility should be preferred rather than integrated volatility. In practice, one
feasible method to estimate λ is by regressing the asset’s return on share order flow over that interval.
The theoretical justification for using regression to back out λ originated from modeling insider
trading in the continuous-time setting initialized by Back (1992). Recently, this idea is discussed
more comprehensively in Back (2017) and Kadan and Manela (2021).

ri = λyi + εi, (35)

30



where ri = pτi − pτi−1 = lnPτi − lnPτi−1 (log-return of assets over specific interval indexed by i) and
yi = Yτi − Yτi−1 (share order flow over specific interval indexed by i).

Construction of proxy for share order flow is still an active area corresponding to financial
market microstructure, which is mainly based on designing trade classification algorithms to identify
trading direction. We follow the convention in extant literature and borrow mainly the ideas from
Holden and Jacobsen (2014) using following “order imbalance” as the proxy of share order flow,11

Order Imbalance = Buys − Sells
Buys + Sells

, (36)

where the trading classification scheme to identify the trading direction, Buys (+1) and Sells
(−1), is inherited from Chakrabarty, Li, Nguyen, and Van Ness (2007) and Holden and Jacobsen
(2014). Although there exists a fact that Kyle’s lambda, λ, essentially of specific format as the
ratio of volatilities (volatility associated with private information relative to volatility associated
with uniformed trading orders) should be a positive number in theory (Kyle, 1985; Back, 1992),
the estimated Kyle’s lambda from regression, λ̂, does not necessarily meet this requirement in
practice. We find empirically that this regression implementation works fine as a way to back out
this information measure since there are just a few exceptions for which the obtained λ̂ is negative
throughout Trade & Quote Daily Product database (09/10/2003-present) as demonstrated in
the following figure

[Place Figure 19 about here]

Besides, we use following figure to demonstrate that for each trading day within a specific month
(November 2018 in Figure 20) as one way to justify the empirically documented positive relationship
between logarithmic returns of target assets and corresponding share order flows

[Place Figure 20 about here]

and finally the estimated private information value associated insider trading is demonstrated as
follows based on Model 5.

[Place Figure 21 about here]

7 Conclusion

One of the main contributions from BLL2021QE is to establish the fixed-k inference theory for
time-varying spot volatility. Although the fixed-k inference for spot volatility is applicable as we do
not require the local estimation window size increases as the sample size increases in the standard
manner, once the local estimation window size is fixed, the corresponding nonparametric estimation

11 We are grateful to Professor Craig W. Holden for kindly sharing their SAS codes.
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of spot volatility is inconsistent and rather noisy. To handle this issue, in this paper we build several
parametric models for spot volatility in high frequency based on the fixed-k theory. All our models
can be cast into a nonlinear non-Gaussian state space form. We then develop Bayesian methods to
estimate alternative model specifications, extract spot volatility, and compare alternative models.
The main advantage of the method we propose in this paper is that we can eliminate much noise
induced from the fixed-k inference for spot volatility in the high-frequency setting. Simulation
studies show that the proposed Bayesian methods work well and the underlying spot volatility can
be accurately extracted. We empirically demonstrate how our proposed method works in practice
by applying it to S&P 500 index ETF, Apple Inc. stock, and CSI 300 Index futures respectively to
extract spot volatility. Then we discuss how the extracted volatility relates to the strategic value of
information for the informed trader (i.e. insider) in the financial market in detail, which shows the
practical usefulness of the proposed method for the studies of financial market microstructure.
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Figures and Tables

Figure 1. Posterior Summary of Parameters for Model 1
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Note: Vertical red dashed lines indicate the location of the posterior mean of the corresponding parameters.
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Figure 2
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Note: In the figure above we jointly plot estimated volatility from fixed-k inference (blue solid line), smoothed volatility

from MCMC (cyan dashed line) and true simulated volatility (red solid line) based on the DGP of Experiment 1

described in section 5. As what we have claimed in the main context that sampling interval specified for this Monte

Carlo experiment is ∆n = 1/390 and number of observations contained in each local estimation block is fixed at k = 5,

thus for every 5 minutes we obtain the corresponding locally estimated volatility. Besides, for this sampling scheme we

have 390/5 = 78 local estimation blocks for each day and totally 22 × 78 = 1716 local estimation blocks as observations

for 22 trading days within one month. For this experiment, we run totally 1000000 MCMC loops with the initial

100000 loops as burn-in samplings to be discarded. Every 20 samplings are saved for posterior analysis.
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Figure 3
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Note: This is an auxiliary figure for demonstration purpose in companion with Figure 2. We jointly plot estimated volatility from fixed-k inference (blue solid

line) and true simulated volatility (red solid line) based on DGP of Experiment 1 in panel (a). Corresponding specifications are exactly the same as in the

description of Figure 2. This noisy “gap” between estimated volatility and simulated volatility is approximately and visually characterized in distribution using the

suggested scaled chi-square distribution in panel (b). This comparison implies that scaled chi-square distribution as one theoretically-suggested distribution in

characterizing this noisy “gap” is empirically supported well for this experiment. Besides, given the reasonably good approximation of the “gap” using scaled

chi-square distribution in the setting where data is generated by specifying sampling interval as ∆n = 1/390, this auxiliary figure can also serve as the supporting

evidence for using one-minute return in practice and sampling interval specified as ∆n = 1/390 is reasonably small enough.
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Figure 4. Posterior Summary of Parameters for Model 2
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Note: Vertical red dashed lines indicate the location of the posterior mean of the corresponding parameters.
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Figure 5
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Note: In the figure above we jointly plot estimated volatility from fixed-k inference (blue solid line), smoothed volatility

from MCMC (cyan dashed line) and true simulated volatility (red solid line) based on the DGP of Experiment

2 described in section 5. Sampling interval for this experiment is still specified the same as in Experiment 1,

∆n = 1/390. We use fixed k = 5 observations contained in each local estimation block to obtain locally nonparametric

estimation of volatility. But for this experiment, we accommodate 2 stochastic volatility factors and allow jumps in the

transition scheme of one stochastic volatility factor. For this experiment, we run totally 1100000 MCMC loops with

the initial 100000 loops as burn-in samplings to be discarded. Every 100 samplings are saved for posterior analysis.
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Figure 6. Posterior Summary of Parameters for Model 3 (strong diurnal pattern)
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Note: Vertical red dashed lines indicate the location of the posterior mean of the corresponding parameters.
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Figure 7. Posterior Summary of Parameters for Model 3 (weak diurnal pattern)
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Note: Vertical red dashed lines indicate the location of the posterior mean of the corresponding parameters.
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Figure 8

(a) Intraday-pattern parameter b ∶= 0.4
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Note: In the figure above we jointly plot estimated volatility from fixed-k inference (blue solid line), smoothed volatility

from MCMC (cyan dashed line) and true simulated volatility (red solid line) based on the DGP of Experiment

3 described in section 5. Sampling interval for this experiment is still specified the same as in Experiment 1,

∆n = 1/390. We use fixed k = 5 observations contained in each local estimation block to obtain locally nonparametric

estimation of volatility. But for this experiment, we accommodate 2 stochastic volatility factors and allow jumps in

the transition scheme of one stochastic volatility factor. Besides, a quadratic functional form is exploited to capture

the intraday volatility pattern as in discussing Model 3 as one alternative model specification.
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Figure 9. Posterior Summary of Parameters for Model 4
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Note: Vertical red dashed lines indicate the location of the posterior mean of the corresponding parameters.
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Figure 10
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Note: In the figure above we jointly plot estimated volatility from fixed-k inference (blue solid line), smoothed volatility

from MCMC (cyan dashed line) and true simulated volatility (red solid line) based on the DGP of Experiment

4 described in section 5. Sampling interval for this experiment is still specified the same as in Experiment 1,

∆n = 1/390. We use fixed k = 5 observations contained in each local estimation block to obtain locally nonparametric

estimation of volatility. Currently for this experiment, single announcement is introduced but it is allowed for these

announcements to take effects for several periods. Specifically, we assume that once an announcement is made at

specific timing point, it can take effect up to L = 5 periods.
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Figure 11. Posterior Summary of Parameters for Model 5
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Note: Vertical red dashed lines indicate the location of the posterior mean of the corresponding parameters.
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Figure 12
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Note: In the figure above we jointly plot estimated volatility from fixed-k inference (blue solid line), smoothed volatility

from MCMC (cyan dashed line) and true simulated volatility (red solid line) based on the DGP of Experiment

5 described in section 5. Sampling interval for this experiment is still specified the same as in Experiment 1,

∆n = 1/390. We use fixed k = 5 observations contained in each local estimation block to obtain locally nonparametric

estimation of volatility. Currently for this experiment, single announcement is introduced but it is allowed for these

announcements to take effects for several periods. Specifically, we assume that once an announcement is made at

specific timing point, it can take effect up to L = 5 periods.
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Figure 13. Posterior Summary of Parameters for Model 6
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Note: Vertical red dashed lines indicate the location of the posterior mean of the corresponding parameters.
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Figure 14
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Note: In the figure above we jointly plot estimated volatility from fixed-k inference (blue solid line), smoothed volatility

from MCMC (cyan dashed line) and true simulated volatility (red solid line) based on the DGP of Experiment

6 described in section 5. Sampling interval for this experiment is still specified the same as in Experiment 1,

∆n = 1/390. We use fixed k = 5 observations contained in each local estimation block to obtain locally nonparametric

estimation of volatility. Currently for this experiment, single announcement is introduced but it is allowed for these

announcements to take effects for several periods. Specifically, we assume that once an announcement is made at

specific timing point, it can take effect up to L = 5 periods.
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Table 1

DGP 1 DGP 2 DGP 3 DGP 4
DIC D(ϑ) pD DIC D(ϑ) pD DIC D(ϑ) pD DIC D(ϑ) pD

Model 1 -3310.18 -3470.29 80.05 1222718.45 1209944.77 6386.84 -3243.91 -3745.30 250.69 -3243.12 -3444.81 100.85
Model 2 -3308.32 -3498.27 94.98 -3210.47 -3568.32 178.92 -3241.08 -3749.67 254.30 -3243.14 -3469.41 113.13
Model 3 -3297.71 -3473.93 88.11 56578.51 54348.87 1114.82 -3329.11 -3470.51 70.70 -3242.52 -3446.71 102.10
Model 4 – – – – – – – – – -3272.01 -3496.99 112.49
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Figure 15
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Note: In the figure above we report empirical results using price of S&P 500 index ETF sampled at the one-minute frequency. Panel ((a)) plots the log-price level

of S&P 500 index. Panel ((b)) plots the nonparametric estimates of spot volatility (blue solid line) and the smoothed volatility estimate (red dashed line) using our

Bayesian techniques. Results demonstrated in this figure correspond to S&P 500 index ETF within November 2015.
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Figure 16
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Note: In the figure above we report the empirical results using the one-minute price data of Apple Inc. Panel ((a)) plots the log-price of Apple Inc. Panel ((b))

plots the nonparametric estimates of spot volatility (blue solid line) and the smoothed volatility estimate (red dashed line) using our Bayesian techniques. Results

demonstrated in this figure correspond to Apple stock within August 2017.
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Figure 17
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Note: In the figure above we report the empirical results using the one-minute price data of CSI 300 index futures in January 2020. Panel ((a)) plots the log-price

level of CSI 300 index futures. Panel ((b)) plots the nonparametric estimates of spot volatility (blue solid line) and the smoothed volatility estimate (red dashed

line) using our Bayesian techniques. Results demonstrated in this figure correspond to CSI 300 index futures within January 2020.
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Figure 18

(a)
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Note: In the figure above we report the empirical results using the one-minute price data of CSI 300 index futures in August 2020. Panel ((a)) plots the log-price

level of CSI 300 index futures. Panel ((b)) plots the nonparametric estimates of spot volatility (blue solid line) and the smoothed volatility estimate (red dashed

line) using our Bayesian techniques. Results demonstrated in this figure correspond to CSI 300 index futures within August 2020.
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Table 2. Model Selected for S&P 500 Index ETF in 2015

Date Model DIC D (ϑ) pD

January 2015 1 -2727.40 -3282.86 277.73
February 2015 2 -2066.28 -2907.14 420.43
March 2015 1 -2498.42 -3200.40 350.99
April 2015 2 -2133.17 -2876.71 371.77
May 2015 2 -2250.85 -3043.06 396.10
June 2015 2 -2283.65 -3422.16 569.25
July 2015 1 -2257.16 -2885.81 314.33
August 2015 1 -2830.98 -3445.31 307.16
September 2015 3 -2982.72 -3332.93 175.10
October 2015 1 -3080.86 -3598.36 258.75
November 2015 1 -2606.25 -3096.89 245.32
December 2015 1 -2849.65 -3422.49 286.42

Table 3. Model Selected for Apple Inc. Stock Price in 2017

Date Model DIC D (ϑ) pD

January 2017 2 -1714.08 -2551.75 418.83
February 2017 2 -1233.57 -1793.62 280.03
March 2017 2 -1821.20 -2678.98 428.89
April 2017 2 -1631.22 -2231.49 300.14
May 2017 2 -2631.12 -3648.79 508.83
June 2017 2 -2731.98 -3771.19 519.61
July 2017 2 -2327.21 -3295.71 484.25
August 2017 2 -2709.67 -3644.26 467.30
September 2017 2 -2318.04 -3247.47 464.72
October 2017 2 -2704.97 -3748.87 521.95
November 2017 2 -2342.86 -3292.15 474.65
December 2017 1 -2377.74 -3633.71 627.98
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Table 4. Model Selected for CSI 300 Index in 2020

Date Model DIC D (ϑ) pD

January 2020 1 -1367.30 -1595.93 114.32
February 2020 1 -1747.86 -2071.24 161.69
March 2020 1 -1809.46 -2192.64 191.59
April 2020 1 -1711.00 -2061.63 175.32
May 2020 2 -1568.94 -1856.89 143.98
June 2020 2 -1713.23 -2274.82 280.79
July 2020 1 -2126.11 -2472.58 173.24
August 2020 2 -1785.07 -2146.15 180.54
September 2020 1 -1874.93 -2230.75 177.91
October 2020 2 -1298.32 -1720.46 211.07
November 2020 2 -1749.23 -2343.43 297.10
December 2020 2 -1797.38 -2286.43 244.53
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Table 5. Posterior Summary of Model 5 Parameters for S&P 500 ETF

ϕ µ
√
σ2e κ µη

√
σ2η b

January 2015 0.9314 -10.6814 0.2327 0.0023 0.4756 0.7925 0.6505
0.0145 0.0920 0.0213 0.0031 1.0793 0.3836 0.0592

February 2015 0.8630 -11.8068 0.4635 0.0127 0.9162 0.7700 0.6232
0.0250 0.1109 0.0367 0.0133 0.7617 0.2799 0.0843

March 2015 0.9205 -11.7109 0.2670 0.0029 1.2659 0.8791 0.6716
0.0163 0.0907 0.0268 0.0031 0.8765 0.3713 0.0629

April 2015 0.8234 -11.8096 0.4126 0.0085 0.3941 0.7304 0.5651
0.0310 0.0742 0.0348 0.0115 0.8503 0.3124 0.0658

May 2015 0.8987 -12.1515 0.3722 0.0054 1.2657 0.9002 0.5700
0.0189 0.1060 0.0310 0.0061 0.9199 0.3801 0.0790

June 2015 0.7930 -11.9509 0.4837 0.0155 1.4376 0.8143 0.6031
0.0321 0.0748 0.0395 0.0109 0.5847 0.2466 0.0621

July 2015 0.9416 -11.9417 0.2564 0.0025 1.5408 0.9219 0.6165
0.0137 0.1257 0.0259 0.0024 0.9558 0.3958 0.0708

August 2015 0.9846 -10.9692 0.2260 0.0025 1.0233 0.8391 0.3343
0.0052 0.7358 0.0179 0.0025 0.8693 0.3647 0.0694

September 2015 0.9659 -10.4311 0.1523 0.0012 0.5647 0.8383 0.5911
0.0083 0.1180 0.0153 0.0014 1.1843 0.4297 0.0473

October 2015 0.9555 -11.1649 0.1888 0.0022 0.7109 0.7978 0.8046
0.0099 0.1095 0.0180 0.0021 0.8601 0.3648 0.0532

November 2015 0.9414 -11.4897 0.2135 0.0018 0.4866 0.8158 0.6810
0.0138 0.1020 0.0215 0.0024 1.1374 0.4057 0.0600

December 2015 0.9698 -11.0310 0.1868 0.0021 0.9683 0.8345 0.7201
0.0080 0.2104 0.0187 0.0019 0.9039 0.3597 0.0570
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Table 6. Posterior Summary of Model 5 Parameters for Apple Inc. Stock

ϕ µ
√
σ2e κ µη

√
σ2η b

January 2017 0.8336 -11.6393 0.4606 0.0175 1.6388 0.7839 0.4773
0.0283 0.0999 0.0374 0.0099 0.5376 0.2390 0.0799

February 2017 0.8363 -11.5400 0.4528 0.0164 1.2551 0.8021 0.5053
0.0311 0.1226 0.0438 0.0149 0.7643 0.2800 0.1041

March 2017 0.8005 -11.4342 0.4771 0.0153 1.1766 0.7884 0.5941
0.0296 0.0846 0.0360 0.0136 0.6884 0.2618 0.0697

April 2017 0.8148 -11.2624 0.4239 0.0132 0.6342 0.7379 0.5785
0.0377 0.0872 0.0408 0.0149 0.7696 0.2943 0.0730

May 2017 0.8907 -11.2462 0.4094 0.0119 0.9838 0.7432 0.3568
0.0196 0.1115 0.0307 0.0103 0.6161 0.2369 0.0768

June 2017 0.9145 -10.8191 0.3869 0.0109 1.0729 0.7394 0.3435
0.0152 0.1269 0.0300 0.0085 0.5542 0.2337 0.0785

July 2017 0.8456 -11.1228 0.4563 0.0148 0.6327 0.6979 0.4765
0.0241 0.0975 0.0312 0.0153 0.6697 0.2468 0.0749

August 2017 0.8947 -10.6961 0.3686 0.0083 0.7524 0.7393 0.4341
0.0185 0.1015 0.0273 0.0088 0.7337 0.2872 0.0711

September 2017 0.9123 -10.8906 0.4057 0.0110 1.3838 0.8018 0.4142
0.0165 0.1400 0.0305 0.0077 0.5950 0.2513 0.0876

October 2017 0.8673 -11.3134 0.4316 0.0108 0.7922 0.7307 0.4636
0.0177 0.0951 0.0261 0.0110 0.7128 0.2624 0.0742

November 2017 0.9202 -11.0970 0.4336 0.0141 1.2448 0.7748 0.2424
0.0172 0.1767 0.0323 0.0100 0.5673 0.2356 0.1010

December 2017 0.8127 -11.1758 0.5669 0.0078 1.9642 3.1212 0.6861
0.0207 0.0839 0.0286 0.0038 0.9528 0.8653 0.0767
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Table 7. Posterior Summary of Model 5 Parameters for CSI 300 Index Futures

ϕ µ
√
σ2e κ µη

√
σ2η b

January 2020 0.9461 -10.6461 0.2139 0.0031 0.5133 0.8219 0.8715
0.0207 0.2011 0.0340 0.0040 1.1557 0.4347 0.0583

February 2020 0.8404 -9.9389 0.3371 0.0063 1.9077 2.9523 0.9678
0.0318 0.0763 0.0260 0.0033 1.0855 0.9737 0.0276

March 2020 0.9532 -9.3718 0.2260 0.0047 1.1011 0.8282 0.9262
0.0131 0.1693 0.0242 0.0040 0.7615 0.3338 0.0455

April 2020 0.8893 -10.7519 0.2662 0.0043 0.5160 0.7759 0.8996
0.0315 0.0872 0.0370 0.0058 0.9981 0.3499 0.0505

May 2020 0.9174 -11.0502 0.2159 0.0029 0.4834 0.8201 0.8263
0.0208 0.0978 0.0280 0.0036 1.1455 0.4057 0.0558

June 2020 0.7761 -11.0128 0.3640 0.0118 0.7256 0.7275 0.7924
0.0339 0.0677 0.0300 0.0112 0.6980 0.2619 0.0534

July 2020 0.9430 -9.2816 0.2159 0.0023 0.5143 0.8143 0.9107
0.0142 0.1233 0.0210 0.0030 1.1364 0.3920 0.0469

August 2020 0.9091 -9.8210 0.2396 0.0031 0.4617 0.8025 0.8289
0.0291 0.0936 0.0350 0.0042 1.1146 0.3946 0.0547

September 2020 0.9013 -10.3231 0.2362 0.0031 0.5099 0.8049 0.8579
0.0250 0.0814 0.0287 0.0040 1.0755 0.3928 0.0509

October 2020 0.7939 -10.6007 0.3586 0.0114 0.7909 0.7751 0.8349
0.0485 0.0794 0.0439 0.0123 0.7867 0.3156 0.0620

November 2020 0.7933 -10.6782 0.3498 0.0116 1.1399 0.7755 0.8509
0.0393 0.0655 0.0344 0.0087 0.5798 0.2553 0.0520

December 2020 0.8011 -10.7099 0.3386 0.0072 0.5606 0.7650 0.9509
0.0467 0.0626 0.0405 0.0094 0.8860 0.3544 0.0352
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Figure 19
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Note: In the figure above, we demonstrate daily estimated Kyle’s lambda associated with S&P 500 ETF by regressing

one-minute log-return of S&P 500 on one-minute share order flow. Panel (a) demonstrates daily estimated Kyle’s

lambda over the trading days from January 2004 to December 2019. For the specific focus on Covid-19 pandemic

period, panel (b) specifically demonstrates corresponding estimation over trading days in 2020. Finally, we use panel

(c) as the complementary to (a) and (b) by demonstrating that using daily high-frequency log-return (at the one-minute

frequency) and share order flow to back out Kyle’s lambda generally works fine (blue bar indicates desired positive

estimation) with just a few exceptions (red bar indicates a negative estimation of Kyle’s lambda that is not ideally

consistent with the theoretical prediction).
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Figure 20
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Note: In the figure above, we demonstrate the basic regression structure corresponding to regressing one-minute

log-return of S&P 500 ETF on corresponding share order flow over active trading days within November 2020 (18

active trading days in total within that month). The major implication of this figure is that the log-return-flow pattern

(captured by Kyle’s λ) associated with insider trading theory under the continuous-time setting is possible to be

unveiled via this daily regression.
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Figure 21
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Note: In the figure above, we demonstrate our estimated private information value associated with insider trading based

on estimated spot volatility using the proposed modeling framework and Bayesian sampling techniques. Specifically,

for each day we use univariate regression by regressing one-minute log-return of S&P 500 ETF on corresponding share

order flow over each active trading day; spot volatility is estimated by fixing the local estimation window size as k = 5

(i.e, every 5-minutes, so that would be 390/5 = 78 locally estimated spot volatilities in each trading day and hence 78

locally quantified private information). Results demonstrated in this figure correspond to November 2020.
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Appendix

A MCMC Procedure for Stochastic Volatility Model with Jumps

Since we are doing Bayesian analysis using Gibbs Sampling, the most preliminary and prominent
thing that is necessary to keep in mind is which should be regarded as data and which should
be regarded as parameters. For discussions contained in this part, we suppress the subscript n
that denotes sample size and temporarily use t as the discrete timing index (i.e. t○ used in the
main context) for the local estimation block. Besides, we use T to denote the total number of local
estimation blocks. Recall we as econometricians have:

{ln ĉt}Tt=1 ∶= {ln y
2
t }

T

t=1 ∶ data, for instance, nonparametric estimation of spot volatility

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

{ln ct}Tt=1 ∶= {ht}
T
t=1 ∶ parameters, latent spot volatility

{ϕ,µ, σ2e} ∶ parameters, volatility parameters

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

{Jt}Tt=1 ∶ parameters, jump component indicator

{ηt}Tt=1 ∶ parameters, jump component magnitude

{κ,µη, σ2η} ∶ parameters, jump parameters

The target is to obtain the posterior sampling of parameters conditional on data by switching
between different parameter space blocks. As we can see from the description specifying data and
parameters, our analysis using Gibbs Sampling could be in general divided into two parts that
are contained in the following two subsections respectively. For other parameters involved in the
alternative models in the main context such as parameter b that specifies the intraday pattern
in Model 3 and {α̃q, β̃q} that specifies the announcement effect in Model 4, we just need to
insert additional acceptance-rejection sampling or Metropolis-Hastings sampling step within the
Gibbs sampling loop. Thus, for a specific sampling step, with all other parameters fixed at the
conditionally sampled value, we just need to subtract that from the measurement equation in the
state-space model.

A.1 Sampling volatility parameters and latent spot volatilities

• Sampling {h̃t}
T

t=1. This sampling step is conditional on data {y2t }
T

t=1 and updated (or initial in
the first MCMC loop) {ϕ,µ, σ2e}, {Jt}

T
t=1, {ηt}

T
t=1, and {κ,µη, σ2η}. For the sake of description
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simplicity, recall transition dynamics of latent spot volatility as follows

h̃t+1 = µ + ϕ (h̃t − µ) + Jt+1ηt+1 + et+1, et+1 ∼ N(0, σ2e)

h̃t = µ + ϕ (h̃t−1 − µ) + Jtηt + et, et ∼ N(0, σ2e)

and this transition dynamics implicitly suggest initial condition as following condition

h̃1 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

µ +
κµη

1 − ϕ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

µ1

,
κ [σ2η + (1 − κ)2µ2η] + (1 − κ)(κµη)2 + σ2e

1 − ϕ2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ς21

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Our target is to obtain posterior distribution of {h̃t}
T

t=1 conditional on data and all the rest
parameters, {ϕ,µ, σ2e}, {Jt}

T
t=1, {ηt}

T
t=1 and {κ,µη, σ2η}. Given the normality assumption for

{et}Tt=1, it is standard to show that

h̃t ∣ h̃/t ∝ exp

⎧⎪⎪⎨⎪⎪⎩
−
[h̃t+1 − µ − ϕ(h̃t − µ) − Jt+1ηt+1]

2

2σ2e
−
[h̃t − µ − ϕ(h̃t−1 − µ) − Jtηt]

2

2σ2e

⎫⎪⎪⎬⎪⎪⎭

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2

1 + ϕ2

σ2e
´¹¹¹¹¹¸¹¹¹¹¹¹¶
coef_a

(h̃t − µ)
2 + ϕh̃t+1 − µ − Jt+1ηt+1 + h̃t−1 − µ − Jtηt

σ2e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

coef_b

(h̃t − µ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

∝ exp

⎧⎪⎪⎨⎪⎪⎩
− 1

2 × (1/
√

coef_a)2
[(h̃t − µ) −

coef_b
coef_a

]
2⎫⎪⎪⎬⎪⎪⎭

which suggests that posterior distribution of h̃t ∣ h̃/t is normal distribution with mean as

h̃∗t = µ +
ϕ

1 + ϕ2
(h̃t+1 − µ − Jt+1ηt+1 + h̃t−1 − µ − Jtηt)

and variance as
v2 = σ2e

1 + ϕ2

If t = 1, note that

h̃1 ∣ h̃2 ∝ exp

⎧⎪⎪⎨⎪⎪⎩
−
(h̃1 − µ1)

2

2ς21

⎫⎪⎪⎬⎪⎪⎭
exp

⎧⎪⎪⎨⎪⎪⎩
−
(h̃2 − µ − ϕ(h̃1 − µ) − J2η2)

2

2σ2e

⎫⎪⎪⎬⎪⎪⎭

∝ exp{−1
2
(ϕ

2

σ2e
+ 1

ς21
)(h̃1 − µ)

2 + (ϕh̃2 − µ − J2η2
σ2e

+ µ1 − µ
ς21
)(h̃1 − µ)}
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which suggests that h̃1 is sampled from normal distribution with mean equal to

µ + (ϕ
2

σ2e
+ 1

ς21
)
−1
(ϕh̃2 − µ − J2η2

σ2e
+

κµη

(1 − ϕ)ς21
)

and variance equal to

(ϕ
2

σ2e
+ 1

ς21
)
−1

If t = T , h̃T ∣ h̃T−1 is simply sampled from normal distribution N (µ + ϕ (h̃T−1 − µ) + JT ηT , σ2e).
Recall that

(ln y2t + lnk) ∣ h̃t ∼ lnχ2
k

and our previous discussion basically shows how h̃t ∣ h̃/t is conditionally distributed. But to
formally sample h̃t from the full conditional posterior distribution f (h̃t ∣ y2t , h̃/t), we should
note the difference between the scenario where there are jumps and the scenario where there
are no jumps. The only difference lies in the mean and variance associated with proposal
distribution that is used to construct Metropolis-Hastings sampling within the Gibbs sampling
loop. To summarize this difference, we still exploit h̃∗t to denote the derived conditional mean
of f (h̃t ∣ h̃/t) and the mean and variance associated with f (h̃t ∣ h̃/t) can be summarized as
follows,

h̃∗t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ + (ϕ
2

σ2e
+ 1

ς21
)
−1
(ϕh̃2 − µ − J2η2

σ2e
+

κµη

(1 − ϕ)ς21
) if t = 1

µ + ϕ

1 + ϕ2
(h̃t+1 − µ − Jt+1ηt+1 + h̃t−1 − µ − Jtηt) if 2 ⩽ t ⩽ T − 1

µ + ϕ (h̃T−1 − µ) + JtηT if t = T

and

v2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ
2

σ2e
+ 1

ς21
)
−1

if t = 1

σ2e
1 + ϕ2

if 2 ⩽ t ⩽ T − 1

σ2e if t = T

Since all other techniques apply similarly here, for each h̃t we exploit fN (ut, v2) as the proposal
distribution with ut as follows

ut = [
v2

2
(ky2t exp (−h̃∗t ) − k) + h̃∗t ]
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• Sampling µ. This sampling step is conditional on data {y2t }
T

t=1, updated {ϕ,σ2e}, {h̃t}
T

t=1,
{Jt}Tt=1, {ηt}

T
t=1 and {κ,µη, σ2η}. Conditional on updated {Jt=1}Tt=1, {ηt}

T
t=1, and {h̃t}

T

t=1 up-
dated within Gibbs loop, sampling µ is straightforward as follows since et = ht − ϕht−1 − (1 −
ϕ)µ − Jtηt is normally distributed with zero mean and variance equal to σ2e . For the sake of
description simplicity, we define

ξ1 = h̃1 ∼ N (µ,
σ2e

1 − ϕ2
) without jumps

ξt = h̃t − ϕh̃t−1, for t ⩾ 2

It is straightforward to show that if there exist jumps components specified, then ξ1 = h̃1 is dis-
tributed with mean (µ1) equal to µ+κµη

1−ϕ and variance (ς21) equal to κ[σ2
η+(1−κ)2µ2

η]+(1−κ)(κµη)2+σ2
e

1−ϕ2 .
Recall the functional form of joint normal density function as follows

fN (ξ1 −
κµη

1 − ϕ
;µ, ς21) ⋅

T

∏
t=2
fN (ξt − Jtηt; (1 − ϕ)µ,σ2e)

= 1√
2πς1

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
((ξ1 − κµη

1−ϕ − µ)
2

2ς21

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

T

∏
t=2

1√
2πσe

exp{−[ξt − Jtηt − (1 − ϕ)µ]
2

2σ2e
}

If π(µ) ∼ N(a, b2), joint likelihood gives as follows

fN(µ;a, b2) ⋅ fN (ξ1 −
κµη

1 − ϕ
;µ, ς21) ⋅

T

∏
t=2
fN (ξt − Jtηt; (1 − ϕ)µ,σ2e)

= 1√
2πb

1√
2πς1

[ 1√
2πσe

]
T−1

exp{− 1

2b2
(µ − a)2 − 1

2ς21
(ξ1 −

κµη

1 − ϕ
− µ)2

− 1

2σ2e

T

∑
t=2
[ξt − Jtηt − (1 − ϕ)µ]2}

∝ exp{− 1

2b2
(µ − a)2 − 1

2ς21
(ξ1 −

κµη

1 − ϕ
− µ)2 − 1

2σ2e

T

∑
t=2
[ξt − Jtηt − (1 − ϕ)µ]2}

Again by applying the method of completing squares, we are able to show that conjugate
posterior distribution of µ is Gaussian distribution with mean equal to

[ 1
b2
+ 1

ς21
+ (T − 1)(1 − ϕ)

2

σ2e
]
−1
[ a
b2
+ 1

ς21
(ξ1 −

κµη

1 − ϕ
) + 1 − ϕ

σ2e

T

∑
t=2
(ξt − Jtηt)]

and variance equal to

[ 1
b2
+ 1

ς21
+ (T − 1)(1 − ϕ)

2

σ2e
]
−1
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• Sampling σ2e . This sampling step is conditional on data {y2t }
T

t=1 and updated {ϕ,µ}, {h̃t}
T

t=1,
{Jt}Tt=1, {ηt}

T
t=1 and {κ,µη, σ2η}. This sampling step is based on the following joint likelihood

function

σ2e ∣ rest ∝ (σ2e)
−α−1

exp{− β
σ2e
} × (σ2e)

−(T−1)/2 × (ς21)
−1/2 ×

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

2ς21
(ξ1 − µ1)2 −

1

2σ2e

T

∑
t=2
[ξt − (1 − ϕ)µ − Jtηt]2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∝ (σ2e)
−α−T−1

2
−1

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝
β + 1

2

T

∑
t=2
[ξt − (1 − ϕ)µ − Jtηt]2

⎞
⎟
⎠
/σ2e

⎫⎪⎪⎪⎬⎪⎪⎪⎭
×

⎧⎪⎪⎨⎪⎪⎩

κ [σ2η + (1 − κ)2µ2η] + (1 − κ)(κµη)2 + σ2e
1 − ϕ2

⎫⎪⎪⎬⎪⎪⎭

−1/2

exp

⎧⎪⎪⎨⎪⎪⎩
−1
2

(1 − ϕ2) (ξ1 − µ1)2

κ [σ2η + (1 − κ)2µ2η] + (1 − κ)(κµη)2 + σ2e

⎫⎪⎪⎬⎪⎪⎭

This is not standard functional form of inverse-gamma distribution in terms of σ2e , hence
additional Metropolis-Hastings step is needed using I.G. as proposal distribution. Note that

σ2e ∣ rest ∝̃ (σ2e)
−α−T−1

2
−1

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝
β + 1

2

T

∑
t=2
[ξt − (1 − ϕ)µ − Jtηt]2

⎞
⎟
⎠
/σ2e

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∼ I.G.(α + T − 1
2

, β + ∑
T
t=2 [ξt − (1 − ϕ)µ − Jtηt]

2

2
)

and accordingly we may use this inverse-gamma distribution as proposal distribution for
sampling σ2e . Specifically, within the loop of Gibbs Sampling, given the current value of
(σ2e)

(i−1) at the i-th iteration, sampling (σ2e)
′ from I.G.(α + T

2 , β +
∑T

t=2[ξt−(1−ϕ)µ−Jtηt]
2

2 ). For
the sake of discussion simplicity, we exploit fI.G. (x;α,β) to denote probability density function
evaluated at x for inverse-gamma distribution with parameter α and β, then the full conditional
density function in terms of σ2e could be rewritten as follows

⎧⎪⎪⎨⎪⎪⎩

κ [σ2η + (1 − κ)2µ2η] + (1 − κ)(κµη)2 + σ2e
1 − ϕ2

⎫⎪⎪⎬⎪⎪⎭

−1/2

exp

⎧⎪⎪⎨⎪⎪⎩
−1
2

(1 − ϕ2) (ξ1 − µ1)2

κ [σ2η + (1 − κ)2µ2η] + (1 − κ)(κµη)2 + σ2e

⎫⎪⎪⎬⎪⎪⎭

× fI.G. (σ2e ;α +
T

2
, β + ∑

T
t=2 [ξt − (1 − ϕ)µ − Jtηt]

2

2
)
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This suggests that the proposed (σ2e)
′ is accepted with probability equal to

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1,
{κ[σ

2
η+(1−κ)2µ2

η]+(1−κ)(κµη)2+(σ2
e)
′

1−ϕ2 }
−1/2

exp{−1
2

(1−ϕ2)(ξ1−µ1)2

κ[σ2
η+(1−κ)2µ2

η]+(1−κ)(κµη)2+(σ2
e)′
}

{κ[σ
2
η+(1−κ)2µ2

η]+(1−κ)(κµη)2+(σ2
e)(i−1)

1−ϕ2 }
−1/2

exp{−1
2

(1−ϕ2)(ξ1−µ1)2
κ[σ2

η+(1−κ)2µ2
η]+(1−κ)(κµη)2+(σ2

e)(i−1)
}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

• Sampling ϕ. This sampling step is conditional on data {y2t }
T

t=1 and updated {µ,σ2e}, {h̃t}
T

t=1,
{Jt}Tt=1, {ηt}

T
t=1 and {κ,µη, σ2η}. If prior imposed on ϕ is

π(ϕ) ∝ {(1 + ϕ)
2
}
ϕ(1)−1

{(1 − ϕ)
2
}
ϕ(2)−1

then full conditional density of ϕ is proportional

π (ϕ) 1√
2πς1

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
(ξ1 − κµη

1−ϕ − µ)
2

2ς21

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

T

∏
t=2

1√
2πσe

exp{−[ξt − Jtηt − (1 − ϕ)µ]
2

2σ2e
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f({h̃t}

T

t=1 ∣ {Jt}
T
t=1,{ηt}

T
t=1,{ϕ,µ,σ2

e},{κ,µη ,σ2
η})

where

log f ({h̃t}
T

t=1 ∣ {Jt}
T
t=1 ,{ηt}

T
t=1 ,{ϕ,µ, σ

2
e} ,{κ,µη, σ2η})

∝ −1
2
log ς21 −

(ξ1 − κµη

1−ϕ − µ)
2

2ς21
− ∑

T
t=2 [ξt − Jtηt − (1 − ϕ)µ]

2

2σ2e

∝ 1

2
log (1 − ϕ2) −

(ξ1 − κµ
1−ϕ − µ)

2
(1 − ϕ2)

2{κ [σ2η + (1 − κ)2µ2η] + (1 − κ)(κµη)2}
−
∑T

t=2 [h̃t − µ − Jtηt − ϕ (h̃t−1 − µ)]
2

2σ2e

Recall that

exp

⎧⎪⎪⎨⎪⎪⎩
−
∑T

t=2 [h̃t − µ − Jtηt − ϕ (h̃t−1 − µ)]
2

2σ2e

⎫⎪⎪⎬⎪⎪⎭

∝ exp

⎧⎪⎪⎨⎪⎪⎩
−
∑T

t=2 (h̃t−1 − µ)
2

2σ2e
ϕ2 +

∑T
t=2 (h̃t − µ − Jtηt) (h̃t−1 − µ)

σ2e
ϕ

⎫⎪⎪⎬⎪⎪⎭

∝ exp{− 1

2Vϕ
(ϕ − ϕ̂)

2
}

where
Vϕ =

σ2e

∑T
t=2 (h̃t−1 − µ)

2
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and

ϕ̂ =
∑T

t=2 (h̃t − µ − Jtηt) (h̃t−1 − µ)

∑T
t=2 (h̃t−1 − µ)

2
.

This suggests that we can use N (ϕ̂, Vϕ) as proposal distribution to construct Metropolis-
Hastings algorithm for sampling ϕ. Specifically, within the loop of Gibbs Sampling, given the
current value of ϕ(i−1) at the i-th iteration, sampling ϕ′ from N (ϕ̂, Vϕ). Since the associated
acceptance-rejection ratio is constructed as

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
π (ϕ′) f ({h̃t}

T

t=1 ∣ {Jt}
T
t=1 ,{ηt}

T
t=1 ,{ϕ′, µ, σ2e} ,{κ,µη, σ2η})

π (ϕ(i−1)) f ({h̃t}
T

t=1 ∣ {Jt}
T
t=1 ,{ηt}

T
t=1 ,{ϕ(i−1), µ, σ2e} ,{κ,µη, σ2η})

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
part I

×
fN (ϕ(i−1); ϕ̂, Vϕ)
fN (ϕ′; ϕ̂, Vϕ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

part II

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

then fN (ϕ(i−1); ϕ̂, Vϕ) and fN (ϕ′; ϕ̂, Vϕ) would be cancelled with exp{− 1
2Vϕ
(ϕ(i−1) − ϕ̂)

2
}

contained in the denominator of part I and exp{− 1
2Vϕ
(ϕ′ − ϕ̂)

2
} contained in the numerator

of part I respectively. This suggests that the proposed value ϕ′ is accepted as ϕ(i) with
probability equal to min{1, exp{g(ϕ′) − g(ϕ(i−1))}} where

g (ϕ) = logπ (ϕ) + 1

2
log (1 − ϕ2) −

(ξ1 − κµ
1−ϕ − µ)

2
(1 − ϕ2)

2{κ [σ2η + (1 − κ)2µ2η] + (1 − κ) (κµη)
2}
.

If the proposed value is rejected, set ϕ(i) equal to ϕ(i−1).

So far we have completely described sampling procedure related to “volatility” components including
latent spot volatility, {h̃t}

T

t=1 and volatility parameter, {ϕ,µ, σ2e}. All the sampling procedure
described within this subsection is conditional on data and remained “jump” components. In
the next subsection, we proceed to discuss sampling procedure related to “jump” components,
{Jt}Tt=1, {ηt}

T
t=1 and {κ,µη, σ2η} conditional on latent spot volatility {h̃t}

T

t=1 and volatility parameter,
{ϕ,µ, σ2e}.

A.2 Sampling jump components and jump parameters

• Sampling {Jt=1}Tt=1. This sampling step is conditional on data {y2t }
T

t=1 and updated {h̃t}
T

t=1,
{ϕ,µ, σ2e}, {ηt}

T
t=1 and {κ,µη, σ2η}. Recall our previous definition that

ξ1 = h̃1

ξt = h̃t − ϕh̃t−1 = (1 − ϕ)µ + Jtηt + et, for t ⩾ 2
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which implies that for t ⩾ 2

ξt ∣ Jt=1 = (1 − ϕ)µ + ηt + et
ξt ∣ Jt=0 = (1 − ϕ)µ + et

Since ηt and et is assumed to be normally distributed independently with each other such that
ηt ∼ N(µη, σ2η) and et ∼ N(0, σ2e), this further implies that

ξt ∣ Jt=1 ∼ N ((1 − ϕ)µ + µη, σ
2
η + σ2e)

ξt ∣ Jt=0 ∼ N ((1 − ϕ)µ,σ
2
e)

With κ updated within Gibbs sampling loop, updating {Jt}Tt=1 follows the scheme as follows

P{Jt = 1 ∣ rest} =
κfN (ξt; (1 − ϕ)µ + µη, σ2η + σ2e)

(1 − κ)fN (ξt; (1 − ϕ)µ,σ2e) + κfN (ξt; (1 − ϕ)µ + µη, σ2η + σ2e)
.

• Sampling {ηt}Tt=1. This sampling step is conditional on data {y2t }
T

t=1, updated {h̃t}
T

t=1,
{ϕ,µ, σ2e}, {Jt}

T
t=1, and {κ,µη, σ2η}. Given the dynamic transition system stated above, if

Jt = 1, then

(ln y2t + lnk) ∣ h̃t ∼ lnχ2
k

h̃t = µ + ϕ(h̃t−1 − µ) + ηt + et

ηt is regarded as parameter with prior distribution such that ηt ∼ N (µη, σ2η), thus posterior
distribution of ηt conditional on all the rest is based on the following joint likelihood function

fN (ηt;µη, σ2η) ⋅ fN (h̃t − ϕh̃t−1 − (1 − ϕ)µ;ηt, σ2e) ⋅ flnχ2
k
(y2t ; h̃t)

Thus

1√
2πση

exp{−
(ηt − µη)2

2σ2η
} ⋅ 1√

2πσe
exp

⎧⎪⎪⎨⎪⎪⎩
−
(h̃t − ϕh̃t−1 − (1 − ϕ)µ − ηt)

2

2σ2e

⎫⎪⎪⎬⎪⎪⎭
⋅ flnχ2

k
(y2t ; h̃t)
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which further implies that

ηt ∣ rest ∝ exp

⎧⎪⎪⎨⎪⎪⎩
−
η2t − 2ηtµη + µ2η

2σ2η
−
(h̃t − ϕh̃t−1 − (1 − ϕ)µ)

2 − 2 (h̃t − ϕh̃t−1 − (1 − ϕ)µ)ηt + η2t
2σ2e

⎫⎪⎪⎬⎪⎪⎭

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2
( 1

σ2η
+ 1

σ2e
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
coef_a

η2t + (
µη

σ2η
+ h̃t − ϕh̃t−1 − (1 − ϕ)µ

σ2e
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
coef_b

ηt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∝ exp

⎧⎪⎪⎨⎪⎪⎩
− 1

2(
√
1/coef_a)2

(ηt −
coef_b
coef_a

)
2⎫⎪⎪⎬⎪⎪⎭

Thus posterior distribution of ηt ∣ rest is normally distributed with mean equal to

( 1

σ2η
+ 1

σ2e
)
−1
(
µη

σ2η
+ h̃t − ϕh̃t−1 − (1 − ϕ)µ

σ2e
)

and variance equal to

( 1

σ2η
+ 1

σ2e
)
−1

• Sampling κ. This sampling step is conditional on data {yt}Tt=1, updated {h̃t}
T

t=1, {ϕ,µ, σ
2
e},

{Jt}Tt=1, {ηt}
T
t=1 and {κ,µη, σ2η}. Since {Jt}Tt=1 follows Bernoulli distribution, Bernoulli(κ),

and by specification we as econometricians have prior knowledge on κ that κ follows Beta
distribution Beta(α,β), then κ is sampled from posterior distribution conditional on {Jt}Tt=1.
Actually {Jt}Tt=1 as binary random variables, realizations of the sum of {Jt}Tt=1 lie in between
0 and T and we denote it as k. Given that

L(κ ∣ k) ∶= P(
T

∑
t=1
Jt = k ∣ T,κ) =

⎛
⎜
⎝

T

k

⎞
⎟
⎠
κk(1 − κ)T−k

and probability density function of Beta distribution is given as follows

π(κ ∣ α,β) = κ
α−1(1 − κ)β−1

B(α,β)

Joint likelihood is given as follows

L(κ ∣ k) ⋅ π(κ ∣ α,β)
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and by integrating out κ from this joint likelihood as follows yields

f(k ∣ T,α, β) = ∫
1

0
L(κ ∣ k) ⋅ π(κ ∣ α,β) dκ

=
⎛
⎜
⎝

T

k

⎞
⎟
⎠

1

B (α,β)∫
1

0

κk+α−1(1 − κ)T−k+β−1dκ

=
⎛
⎜
⎝

T

k

⎞
⎟
⎠
B(k + α,T − k + β)

B(α,β)

=
⎛
⎜
⎝

T

k

⎞
⎟
⎠

B (∑T
t=1 Jt + α,T −∑T

t=1 Jt + β)
B(α,β)

Given the property of Beta function and Gamma function, it is easy to show that con-
ditional on realizations of {Jt}Tt=1, posterior distribution of κ follows Beta distribution as
Beta (∑T

t=1 Jt + α,T −∑T
t=1 Jt + β).

• Sampling µη. This sampling step is conditional on data {yt}Tt=1, updated {h̃t}
T

t=1, {ϕ,µ, σ
2
e},

{Jt}Tt=1, {ηt}
T
t=1 and {κ,σ2η}. Joint density function is as follows. If we assume prior distribution

for µη with prior mean equal to a and prior variance equal to b2,

( 1√
2πb
) exp{−

(µη − a)2

2b2
} × ( 1√

2πση
)
T (1) T (1)

∏
i=1

exp{−
(ηi − µη)2

2σ2η
}

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
(µη − a)2

2b2
−

T (1)

∑
i=1
−
(ηi − µη)2

2σ2η

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1
2
( 1
b2
+ T

(1)

σ2η
)µ2η +

⎛
⎜
⎝
a

b2
+

T (1)

∑
i=1

ηi
σ2η

⎞
⎟
⎠
µη

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Again by applying the method of completing squares, we can show that µη is updated from
posterior distribution following distribution with the mean equal to

( 1
b2
+ T

(1)

σ2η
)
−1 ⎛
⎜
⎝
a

b2
+

T (1)

∑
i=1

ηi
σ2η

⎞
⎟
⎠

and variance equal to

( 1
b2
+ T

(1)

σ2η
)
−1

• Sampling σ2η. This sampling step is conditional on data {yt}Tt=1, updated {ht}Tt=1, {ϕ,µ, σ2e},
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{Jt}Tt=1, {ηt}
T
t=1 and {κ,µη}. For Jt = 1, ηt is normally distributed with mean equal to µη and

variance equal to σ2η. We denote T (1) as the number of elements in {Jt}Tt=1 which Jt = 1. The
full conditional density function in terms of σ2η with inverse-gamma prior distribution imposed
on σ2η is summarized as follows

σ2η ∣ rest ∝ (σ2η)
−α−1

exp{− β
σ2η
} × ( 1√

2πση
)
T (1)

×
T (1)

∏
i=1

exp{−
(ηi − µη)2

2σ2η
}

If we impose inverse-gamma distribution as the prior distribution for σ2η, based on the previous
remark, we can sample σ2η from inverse-gamma distribution as the posterior distribution,

σ2η ∣ rest ∼ I.G.
⎛
⎝
α + T

(1)

2
, β + 1

2

T (1)

∑
i=1
(ηi − µη)2

⎞
⎠
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B Particle Filter for Approximating Likelihood Function

We follow Malik and Pitt (2011) and Stroud and Johannes (2014) by constructing a particle filter
algorithm to approximate the marginal likelihood function that is used for calculating information
criteria based on the marginal likelihood function. Our particle filter algorithm is summarized
as follows. For the sake of notation simplicity, we use t for discrete timing index and replace the
corresponding nonparametric estimation of volatility from 1 to t, {ln(ĉn,1∶t)}, with ln y21∶t. We collect
all the latent state variables into Zt such that

Zt = {h̃t, Jt, ηt}

where we use h̃t = ht + µ. Besides, we implicitly assume that parameters that specify the models are
fixed at specific values.

p (Zt ∣ ln y21∶t) = p (h̃t ∣ ln y21∶t)p (Jt, ηt ∣ h̃t, ln y21∶t)

= p (h̃t ∣ ln y21∶t)p (Z∗t ∣ h̃t, ln y21∶t)

where for the sake of notation simplicity, we collect “jump” related latent variables jointly into
Z∗t = {Jt, ηt}. Our analysis begins from the observation that the first part of this factorization,
p (h̃t ∣ ln y21∶t) is unavailable analytically while the second part of this factorization, p (Z∗t ∣ h̃t, ln y21∶t)
is available in closed form. This actually has been demonstrated in the description of MCMC
sampling algorithm in the previous section. We then use the result in Malik and Pitt (2011) that
the likelihood function for a fixed parameter value at θ can be approximated using the output from
APF as

L({ln y2t }
T

t=1 ∣ θ) =
T

∏
t=1

⎛
⎜
⎝
1

N

N

∑
i=1

π
(i)
t

⎞
⎟
⎠

⎛
⎜
⎝
1

N

N

∑
i=1

w
(i)
t

⎞
⎟
⎠

(B.1)

where N denotes the number of particles used in APF. The generic idea for obtaining {π(i)t } and
{w(i)t } is as follows:

1. Start with sample Z(i)t−1 = (h̃
(i)
t−1, Z

∗(i)
t−1 ) ∼ p (Zt−1 ∣ ln y21∶t−1). For initial states Z(i)0 , we sample

h̃
(i)
0 from initial stationary distribution following mix-normal such that

h̃
(i)
0 ∼ N

⎛
⎝
µ +

κµη

1 − ϕ
,
κ [σ2η + (1 − κ)2µ2η] + (1 − κ)(κµη)2 + σ2e

1 − ϕ2
⎞
⎠

and J
(i)
0 , η(i)0 from Bernoulli(κ) and N (µη, σ2η) respectively.

2. Compute π(i)t ∝ p(ln y2t ∣
ˆ̃
h
(i)
t ), where

ˆ̃
h
(i)
t = E (h̃t ∣ Z

(i)
t−1, ln y

2
1∶t−1) .
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Moreover, note that dynamics of latent variables are specified such that h̃t − µ = ϕ (h̃t−1 − µ) +
Jtηt + et and et ∼ N (0, σ2e), Jt ∼ Bernoulli (κ), ηt ∼ N (µη, σ2η), then conditional on Z

(i)
t−1 =

{h̃(i)t−1, J
(i)
t−1, η

(i)
t−1}, we have ˆ̃

h
(i)
t calculated as follows

ˆ̃
h
(i)
t = E (h̃t ∣ Z(i)t−1, ln y

2
1∶t−1)

= ϕh̃
(i)
t−1 + (1 − ϕ)µ +E [Jtηt] +E [et]

= ϕh̃
(i)
t−1 + (1 − ϕ)µ + κµη

3. With the results calculated in step 2, we then generate

ki ∼M(π(1)t , . . . , π
(N)
t )

where M(⋅) refers to the generic multinomial distribution specified by {π(i)t }.

4. Generate h̃̃
(i)
t ∼ p (h̃t ∣ Z

(ki)
t−1 , ln y

2
1∶t−1). This is a mix-normal distribution such that if Jt = 1,

N ((1 − ϕ)µ + µη, σ2η + σ2e); if Jt = 0, N ((1 − ϕ)µ,σ2e).

h̃̃
(i)
t ∣ Zki

t−1, ln y
2
1∶t−1 ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N (ϕh̃t−1 + (1 − ϕ)µ + µη, σ2η + σ2e) if Jt = 1

N (ϕh̃t−1 + (1 − ϕ)µ,σ2e) if Jt = 0

5. Compute w(i)t ∝ p(ln y2t ∣ h̃̃
(i)
t ) /π

(ki)
t .

6. Generate
ji ∼M(w(1)t , . . . ,w

(N)
t )

and set h̃(i)t = h̃̃
(ji)
t .

7. Generate Z∗(i)t ∼ p (Z∗t ∣ h̃
(i)
t , ln y21∶t). For fixed θ, recall that Z∗(i)t = {J(i)t , η

(i)
t } and we have

derived in subsection A.2 that

J
(i)
t ∣ h̃(i)t , ln y21∶t ∼ Bernoulli

⎛
⎜
⎝

κfN (ξ(i)t ; (1 − ϕ)µ + µη, σ2η + σ2e)

(1 − κ)fN (ξ(i)t ; (1 − ϕ)µ,σ2e) + κfN (ξ
(i)
t ; (1 − ϕ)µ + µη, σ2η + σ2e)

⎞
⎟
⎠

and η
(i)
t ∣ h̃

(i)
t , ln y21∶t is normally distributed with mean equal to

( 1

σ2η
+ 1

σ2e
)
−1 ⎛
⎝
µη

σ2η
+
ξ
(i)
t − (1 − ϕ)µ

σ2e

⎞
⎠
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and variance equal to

( 1

σ2η
+ 1

σ2e
)
−1

where ξ(i)t = h̃
(i)
t − ϕh̃

(i)
t−1.
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C Additional Discussions

C.1 DGP Dynamic and Block Dynamic

We summarize one another example demonstrating the insight in Remark 5.1. Specifically, we set
dt ∶=∆n

i = 1/390, σh = 1.6, k = 5 and κh = 0.5, then ϕh = 1 − κhdt ≈ 0.9987, ϕkh ≈ 0.9936 and

√
σ2e =

¿
ÁÁÁÀσ2hdt(1 − ϕ

2(k+1)
h )

1 − ϕ2h
≈ 0.1978

while the corresponding MCMC samplings are summarized as follows

Figure C.1
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C.2 Announcements and jumps

In this remark, we make more discussions about model comparisons when the data generating
process is DGP 4, which corresponds to the concern about whether we need to specify a model
accommodating announcement effects when there are observed announcements. For the results
demonstrated above, we simulate announcement indicators at a relatively high-frequency such that
approximately on average there is one announcement each day (1/(78) ≈ 0.013). And if we decrease
the rate at which announcement is made (for instance, 1/(78 × 2) ≈ 0.0064, 1/(78 × 3) ≈ 0.004,
1/(78 × 10) ≈ 0.001). If seldom are there any announcements, for instance approximately there
is only one announcement made every half-month (1/(78 × 10) ≈ 0.001), model specification with
announcement effects would not be that distinguishable (using DIC) in comparison to other model
specifications. Corresponding results are summarized in Table C.1. The basic point is that when
data generated from a specific model is hard to be distinguished from data generated from other
models, this will be reflected in using DIC for model comparison. Similar scheme applies for jump
specifications, which is summarized in Table C.2, where we compare Model 1, Model 2 and
Model 3 across different DGP 3 with different specifications of rates at which jump happens and
different jump magnitudes (size).

Table C.1

Announcement rate
0.013 0.0064 0.004 0.001 0.0006

DIC D(ϑ) pD DIC D(ϑ) pD DIC D(ϑ) pD DIC D(ϑ) pD DIC D(ϑ) pD

Model 1 -3243.12 -3444.81 100.85 -3255.95 -3436.43 90.24 -3282.65 -3455.12 86.24 -3299.98 -3468.52 84.27 -3310.18 -3470.29 80.05
Model 2 -3243.14 -3469.41 113.13 -3255.66 -3463.36 103.85 -3282.28 -3484.30 101.01 -3298.39 -3495.35 98.48 -3308.29 -3498.62 95.16
Model 3 -3242.52 -3446.71 102.10 -3255.06 -3438.39 91.67 -3280.30 -3457.39 87.55 -3298.94 -3469.80 85.43 -3309.44 -3471.69 81.12
Model 4 -3272.01 -3496.99 112.49 -3276.67 -3489.01 106.17 -3287.22 -3492.75 102.76 -3298.69 -3501.63 101.47 -3308.29 -3497.44 94.58

Table C.2

Jump rate & jump magnitude

κ = 0.013, µη = 0.8 κ = 0.0064, µη = 2 κ = 0.004, µη = 2.6 κ = 0.001, µη = 2.6

DIC D (ϑ) pD DIC D (ϑ) pD DIC D (ϑ) pD DIC D (ϑ) pD

Model 1 1222718.45 1209944.77 6386.84 850881.90 840710.30 5085.80 1176678 1174184 1247.13 385010.2 382755.9 1127.18
Model 2 -3210.47 -3568.32 178.92 -3055.91 -3492.26 218.17 -3056.22 -3624.52 284.15 -2954.89 -3367.02 206.06
Mdoel 3 56578.51 54348.87 1114.82 23271.85 19608.22 1831.82 59762.12 56986.58 1387.77 -2045.05 -2576.56 265.75
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C.3 MCMC convergence trace plot on empirical part

C.3.1 MCMC trace plot of Model 5 on S&P 500 ETF
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Note: In the figure above, we demonstrate the trace plot of MCMC samplings corresponding to the applica-

tion of Model 5 S&P 500 ETF in November 2015. Thus, the trace plot of posterior MCMC samplings of

{ϕ,µ,
√
σ2
e , κ, µη,

√
σ2
η, b}. This result is based on 1100000 MCMC samplings with the initial 100000 samplings

as burn-in samplings. We save one draw every 100 samplings to construct the posterior sample for the remaining

samplings.
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C.4 MCMC trace plot of Model 5 on Apple Inc. stock price
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Note: In the figure above, we demonstrate the trace plot of MCMC samplings corresponding to the application

of Model 5 Apple Inc. stock price in August 2017. Thus, the trace plot of posterior MCMC samplings of

{ϕ,µ,
√
σ2
e , κ, µη,

√
σ2
η, b}. This result is based on 1100000 MCMC samplings with the initial 100000 samplings as

burn-in samplings. We save one draw every 100 samplings to construct the posterior sample for the remaining

samplings.
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C.4.1 MCMC trace plot of Model 5 on CSI 300 index futures
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Note: In the figure above, we demonstrate the trace plot of MCMC samplings corresponding to the applica-

tion of Model 5 CSI 300 index futures in August 2020. Thus, the trace plot of posterior MCMC samplings of

{ϕ,µ,
√
σ2
e , κ, µη,

√
σ2
η, b}. This result is based on 1100000 MCMC samplings with the initial 100000 samplings as

burn-in samplings. We save one draw for every 100 samplings to construct the posterior sample for the remaining

samplings.
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